1 / 44

A new equation of motion method for multiphonon nuclear spectra .

A new equation of motion method for multiphonon nuclear spectra. N. Lo Iudice Universit à di Napoli Federico II Kazimierz08. Acknowledgments. J. Kvasil , F. Knapp, P. Vesely (Prague) F. Andreozzi , A. Porrino (Napoli) Also Ch. Stoyanov (Sofia) A.V. Sushkov ( Dubna ).

brooke
Télécharger la présentation

A new equation of motion method for multiphonon nuclear spectra .

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A newequationofmotionmethodformultiphononnuclearspectra. N. Lo Iudice Università di Napoli Federico II Kazimierz08

  2. Acknowledgments • J. Kvasil, F. Knapp, P. Vesely (Prague) • F. Andreozzi, A. Porrino (Napoli) • Also Ch. Stoyanov (Sofia) A.V. Sushkov (Dubna)

  3. From mean field to multiphonon approaches Anharmonic features of nuclear spectra: Experimental evidence of multiphonon excitations Necessity of going beyondmean field approaches A successful microscopic(QPM) multiphononapproach A new (in principle exact) multiphonon method

  4. Collective modes: anharmonic features Mean field:Landau damping • Beyond mean field: • * Spreading width • * *Multiphon excitations - High-energy(N. Frascaria, NP A482, 245c(1988); T. Auman, P.F.Bortignon, H. Hemling, Ann. Rev. Nucl. Part. Sc. 48, 351 (1998)) Double and tripledipolegiantresonances - Low-energy M. Kneissl. H.H. Pitz, and A. Zilges, Prog. Part. Nucl. Phys. 37, 439 (1996); M. Kneissl. N. Pietralla, and A. Zilges, J.Phys. G, 32, R217 (2006) : • Two- and three-phononmultiplets • Proton-neutronmixed-symmetrystates (N. Pietrallaet al. PRL 83, 1303 (1999))

  5. A microscopicmultiphononapproach: QPMSoloviev, TheoryofAtomic Nuclei: Quasiparticles and Phonons, Bristol, (1992) H = Hsp + Vpair + Vpp + Vff H[(a†a), (a†a†),(aa)]  H[(α†α ),(α†α†),(αα ) ]  α†α†O†λ αα Oλ Oλ†=Σkl [Xkl(λ)α†k α†l–Ykl(λ)αkαl]  HQPM= Σnλωn (λ)Q†λ Qλ + Hvq  Ψν= ΣncnQ†ν(n) |0> + ΣijCijQ† (i) Q†(j) |0> + ΣijkCijkQ†(i) Q†(j) Q†(k)|0>

  6. Symmetric |n, ν>s = QSn |0 > = (Qp + Qn)n |0 > MS |n, ν>MS = QAQS (n-1) |0 > = (Qp - Qn) (Qp + Qn) (n-1) |0 > Signature Preserving symmetry transitions M(E2)  QS n → n-1 Changing symmetry transitions M(M1)  Jn – Jp n → n π-νMixedSymmetry E2 n=3 E2 M1 n=2 E2 n=2 M1 E2 n=1 MS n=1 J+1 E2 M1 J J-1 Sym J Scissors multiplet S | n,J> = (Jp – Jn) |nJ> = ΣJ’ |n J’> <nJ’| S|nj> Bsc(M1) = ΣJ’ |<nJ’|M(M1)|nJ>|2 ~ 1.5 - 2 μN2

  7. A QPM calculation: N=90 isotonesN. L, Ch. Stoyanov, D.Tarpanov, PRC 77, 044310 (2008) E2 M1

  8. 4+ state in OsisotopesN. L. and A. V. Sushkovsubmittedto PRC 4+ Hexadecapoleone-phonon? Ψ  |n=1,4+> E4 S(t,α) Double-g ?  |> E2 E4 2 Eg E2 R4(E2) = B(E2,4+→ 2+)/B(E2,2+ → 0+) 2 4+ 2g+ 2g+ 0+ 0+ QPM Ψ  0.60 |n=1,4+> + 0.35 |>

  9. 4+: QPM versus EXP

  10. Successes and limitations of theQPM Successes Itisfullymicroscopicand valid atlowand highenergy. includingthe double GDR(Ponomarev, Voronov) Limitations: Valid for separable interactions Antisymmetrization enforced in the quasi-boson approximation, Ground state not explicitly correlated (QBA) Temptativeimprovements MultistepShellmodel (MSM) (R.J.Liotta and C. Pomar, Nucl. Phys. A382, 1 (1982)) Theyexpand and linearize <α|[[H, O†],O†]|0> ( O†= ΣphX(ph)a†pah ) Multiphononmodel (MPM) (M. Grinberg, R. Piepenbringet al. Nucl. Phys. A597, 355 (1996) Along the samelines BothMSM and (especially) MPM look involved

  11. A new (exact) multiphonon approach Eigenvalue problem in a multiphonon space |Ψν > H = Σn HnHn |n; β> ( n= 0,1.....N ) H | Ψν > = Eν| Ψν > Generationof the|n; β> (basis states) An obvious (but prohibitive!!) choice |n; β> = | ν1, ν2,… νi ,…νn> where (TDA) | νi > = Σphcph(νi )a†p ah|0> A workable choice|n=1; β> = | νi > = Σphcph(νi )a†p ah|0> ( TDA)  |n; β> =ΣαphC(n)αpha†p ah| n-1; α >

  12. EOM: Construction of the Equations <n; β |[H, a†p ah]| n-1; α> Crucialingredient Preliminary step: <n; β |[H, a†p ah]| n-1; α> = ( Eβ(n) – Eα(n-1))<n; β |a†p ah| n-1; α > (LHS) (RHS) It follows from * request < n; β|H|n; α > = Eα(n)δαβ ** property <n; β|a†pah|n’; γ > = δn’,n-1< n; β |a†pah| n-1; γ >

  13. Equations of Motion: LHS Commutatorexpansion < n; β | [H, a†p ah] | n-1; α >= (εp- εh) <n; β |a†p ah| n-1; α >. + linear 1/2 Σijp’Vhjpk<n; β|a†p’ aha†iaj| n-1; α > + not linear Î = Σγ|n-1; γ >< n-1; γ| Linearization < n; β | [H, a†p ah] | n-1; α >= = Σp’h’γ Aαγ(n)(ph;p’h’)<n; β|a†p’ ah’| n-1; γ>

  14. LHS=RHS A(n ) X(n)= E(n)X(n) Aαγ(n) (ij)= [(εp–εh ) + Eα(n-1) ] δij(n-1)δαβ(n-1)+ [VPHρH+ VHPρP+VPPρP+ VHHρH]αiβj Xα(β) (i ) = < n; β |a†p ah| n-1; α> ρH ≡{< n-1,γ|a†hah’|n-1,α>} ρP ≡ {< n-1,γ|a†pap’|n-1,α>} n =1 TDA A(1)X (1) = E (1)X (1) A(1)(ij) = δij[(εp–εh )+ E(0)] + V(p’hh’p) n=1 |n=1; β> = | νi > = Σphcpha†p ah|0> n> 1 |n; β> =ΣαiCα(β) (i ) a†pah| n-1; α > n=1 C = X n> 1 X= DC Dαα’ (ij) = < n-1; α’|(a†h’ap’)( a†p ah)| n-1; α> overlap matrix

  15. General Eigenvalue Problem A(n)X(n)= E(n)X(n) X(n)=D(n)C(n) (AD)C= H C= E DC Eigenvalue Equation Dαα’ (ij) = < n-1; α’|(a†h’ap’)( a†p ah)| n-1; α> overlap matrix Problem i)how to compute D Problem ii) redundancyDetD = 0

  16. General Eigenvalue Problem (AD)C= H C= E DC • Solution of problem i) Aαγ(n) (ij)= [εp–εh + Eα(n-1)]δij(n-1)δαβ(n-1) + [VPHρH+ VHPρP+VPPρP+ VHHρH]αiβj Dαα’ (ij) = < n-1; α’|(a†h’ap’)( a†p ah)| n-1; α> overlap matrix D = ρH (n-1) – ρP (n-1)ρH (n-1) ρP(n-1) = C (n-1) X (n-1) – C (n-1) X (n-1)ρP (n-2) recursive relations Problem i) solved!!!!

  17. General Eigenvalue Problem (AD)C= H C= E DC Solution of Problem ii) (redundancy) *Choleski decomposition ** Matrixinversion Exact eigenvectors DĎ HC = (Ď-1AD)C = E C |n; β>=ΣαphCα(β) (i )a†p ah |n-1; α>  Hn (phys)

  18. Iterative generation of phonon basis Starting point|0> Solve Ĥ(1)C(1) = E(1)C(1) |n=1, α> X(1) ρ(1) Solve Ĥ(2)C (2) = E (2)C (2) |n=2,α> X(2) ρ(2) ……… X(n-1) ρ(n-1) Solve Ĥ(n)C (n) = E (n)C (n) X(n) ρ(n) |n,α.> The multiphonon basis is generated !!!

  19. H: Spectral decomposition, diagonalization H= Σ nαE α(n)|n; α><n;α| + (diagonal) + Σnα β|n; α><n;α| H |n’;β><n’;β| (off-diagonal) n’= n ±1, n±2 Off-diagonalterms: Recursive formulas < n; β | H| n-1; α> = Σphγϑαγ(n-1) (ph)Xγ(β) (ph) < n; β | H| n-2; α > =Σ V pp’hh’Xγ(β) (ph) Xγ(α) (p’h’) |Ψν> = Σnα Cα(ν) (n) | n;α> |n;α> = Σγ Cγ(α)a†p ah | n-1;γ> Outcome H |Ψν> = Eν|Ψν>

  20. C3 | λ1 λ2 λ3> + C1 | λ1> C2 | λ1 λ2> + C0 |0> Ψ0Ψν(n) EMPM E.m. response W.F. |Ψν> = Σn{λ} C{λ}(ν) (n) | n;{λ1λ2.λn }> |λ> = Σph cph (λ) a†p ah|0> e.m. operator Мλμ= rλ Yλμ Strength Function S(Eλ) = Σ Bn (Eλ) δ(E- En) Bn (Eλ) =|<Ψnν|| Мλ ||Ψ0>|2

  21. 16O: TDA (CM free) response and SMspacedimensions

  22. EMPM : Exact implementation in 16O for N=4 SM space All particle-hole (p-h) configurations up to3ħω (2s,1d,0g) (1p,0f) (1s,0d) 0p 0s Free ofCM spuriousadmixtures

  23. Meanfield versus EMPM E response

  24. NEW runningsums

  25. EW runningsums

  26. CM motion Hamiltonian H = H0 + V = ΣihNils(i)+ Gbare ( VBonnA  Gbare) CM motion ( F. Palumbo Nucl. Phys. 99 (1967)) H H+Hg Hg= g [P2/(2Am) + (½) mAω2 R2] For g>>1 E CM >> Eintr

  27. CMmotion in TDA: Isoscalar E1

  28. CMmotion in EMPM

  29. Spectra

  30. Perspectives: New formulation < n; β |[H, a†p ah]| n-1; α>  < n; β |[H, O†λ]| n-1; α> O†λ= Σph cph(λ )a†pah λ’γAαγ(n) (λ,λ’) X(β)γ λ’= Eβ(n)X (β)γ λ X(β)αλ= < n; β |O†λ| n-1; α > Aαγ(n) (λ,λ’) = [ Eλ + Eα(n-1) ] δλλ’δαγ+ ρλλ’Vραγ(n-1) ρλλ’ (kl)≡<λ’| a†kal|λ>ραγ(n-1) (kl) = < n-1,γ| a†kal|n-1,α> |n; β> =ΣαλC(β)αλO†λ| n-1; α > = ΣC(β) {λi} |λ1,.…λi….λN > C (β) {λi} = Σ C(β)αλ1C(α)γλ2C (γ)δλ3

  31. Vertices Aαγ(n) (λ,λ’) = [ Eλ + Eα(n-1) ] δλλ’δαγ+ ρλλ’Vραγ(n-1) TDA (n=1) MPEM (n=3) γ -------- --------- p’ λ’ h’ p h λ α Vph’hp’ ρλλ’Vραγ(n-1)

  32. THANK YOU

  33. EW sum rule SEW (E ) = ½ Σμ <[M (E μ),[H, M (E μ)]> = [(2  + 1)2/16π ](ħ2/2m) A < r2  -2> SEW (E 1, τ = 0) = [(2  + 1)2]/16π (ħ2/2m) x A[11< r4> -10 R2<r2> + 3 R4]

  34. Ground state |Ψ0> = C0(0) |0> + ΣλCλ(0) |λ, 0> + Σλ1λ2Cλ1λ2(0) |λ1 λ2, 0> 1 = < Ψ0|Ψ0> = P0 + P1 + P2

  35. 16O negative parity spectrum • Up to three phonons

  36. IVGDR Мλμ= τ3 r Y1μ≈ Rπ - Rν TDA |1->IV ~ |1 (p-h) (1ħω)>(TDA)

  37. ISGDR Мλμ= r Y1μ≈ RCM !!! Мλμ= r3 Y1μ Toroidal |1->IS ~ |1(p-h) (3 ħω)> + |2 (p-h) (1ħω + 2ħω)> + |3(p-h) (1ħω )>

  38. Octupole modes Мλμ= r3 Y1μ Low-lying |3->IS ~ |1(p-h) (3 ħω)> + |2(p-h) (1ħω + 2ħω)> + |3(p-h) (1ħω )>

  39. Effect of CM motion

  40. Effect of the CM motion

  41. Concluding remarks • The multiphonon eigenvalue equations - have a simple structure • yield exact eigensolutions of a general H • The 16O test shows that • an exact calculation in the full multiphonon space is feasible at least up to 3 phonons and 3 ħω. • To go beyond • Truncation of the space needed!!! • Truncation is feasible (the phonon states are correlated). • Ariformulation for an efficient truncation is in progress

  42. Implications of the redundancy |n; β> =ΣjCj |i> where |i > = a†p ah| n-1; α >(not linearly independent ) Eigenvalue problemofgeneral form Σj [<i|H|j> - Ei <i|j>]Cj = 0 But (problems again!!) i.A direct calculation of <i|H|j>and<i|j> is prohibitive !! ii.The eigenstates would contain spurious admixtures!! How to circumvent these problems?

  43. Problem: Overcompletness for n>1 |n; β> =ΣαphCαpha†p ah| n-1; α > a†p ah | n-1; α > are not fully antysymmetrized !!!  p h p h a†p ah| n-1; α > ≡ The multiphononstates are not linearly independent and form an overcompleteset.

  44. 16O as theoretical lab Structure of16O: Atheoretical challenge Pioneering work: First excited 0+as deformed 4p-4h excitations G. E. Brown, A. M. Green, Nucl. Phys. 75, 401 (1966) (TDA) IBM (includes up to 4 TDA Bosons) H. Feshbach and F. Iachello, Phys. Lett. B 45, 7 (1973); Ann. Phys. 84, 211 (194) SM up to 4p-4h and 4 ħω W.C. Haxton and C. J. Johnson, PRL 65, 1325 (1990) E.K. Warbutton, B.A. Brown, D.J. Millener, Phys. Lett. B293,7(1992) No-core SM (NCSM) Huge space!!! Symplectic No-core SM (SpNCSM) a promising tool for cutting the SM space T. Dytrych, K.D. Sviratcheva, C. Bahri, J. P. Draayer, and J.P. Vary, PRL 98, 162503 (2007) Self-consistent Green function (SCGF) (extends RPA so as to include dressed s.p propagators and coupling to two-phonons) C. Barbieri and W.H. Dickhoff, PRC 68, 014311 (2003); W.H. Dickhoff and C. Barbieri, Pro. Part. Nucl. Phys. 25, 377 (2004)

More Related