1 / 28

ILC Detector R&D

ILC Detector R&D. William Morse Physics Dept., BNL. ILC SiD Detector Concept. BNL has joined SiD last fall, which is one of four ILC detector concepts. First draft of the SiD Detector Outline Document submitted to LC World Wide Study last month (150p).

Télécharger la présentation

ILC Detector R&D

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ILC Detector R&D William Morse Physics Dept., BNL William Morse ILC R&D April 19, 2006

  2. ILC SiD Detector Concept • BNL has joined SiD last fall, which is one of four ILC detector concepts. • First draft of the SiD Detector Outline Document submitted to LC World Wide Study last month (150p). • Forward Detector Section written by BNL (W.M. coordinator). • Web site: http://www-sid.slac.stanford.edu/ William Morse ILC R&D April 19, 2006

  3. Forward Region Physics • Measurement of beam-strahlung pairs for ILC bunch characterization (BeamCal). • Measurement of forward Bhabha pairs for precision measurement of luminosity normalization (LumCal) to 210-4. • Maintain detector hermeticity (missing PT) down to very small polar angles (5mrad). William Morse ILC R&D April 19, 2006

  4. Forward Detector Challenges • Radiation Hardness (10MGy/year) • Interfacing with the final focus elements • High occupancy rates (104 pairs/BX) • Good efficiency, energy and position resolution in the presence of very high backgrounds • Fast readout to guide beams together William Morse ILC R&D April 19, 2006

  5. SiD Forward Detector Coordinators • Detector Hermeticity with BeamCal/LumCal – Morse • Monitoring the Instantaneous Luminosity with BeamCal and GamCal – Morse • LumCal Physics Requirements– Morse • Occupancy Issues in the Forward Direction – Morse • Radiation Damage Issues in the Forward Direction – Li • Space, Support, and Integration Issues – Lissauer • Readout Issues – Lanni • R&D Plan – Lissauer • Physics: Lanni, Lissauer, Morse; Instrumentation: De Geronimo, Li, Mead, Radeka, Rescia; S.C.Magnet Div: Bret Parker; U. Oregon: Dave Strom William Morse ILC R&D April 19, 2006

  6. What is Beam-strahlung? • Flat beam with length L, half-width B, half-height A, L >> B >> A,  = Ne/4ABL • Ev = y/0 Bh = y/c0 • Fv = e(1-2)y/0 (space charge force) • Two bunches overlap: • E = 0 Bh = 2y/c0 – up to 1 KT for ILC • Fv = 2ey/0 • Power radiated in gammas  ( F)2 •  0.5 MW at ILC William Morse ILC R&D April 19, 2006

  7. Beam-strahlung and Pairs • Bethe-Heitler pair created when  meets incoming e and converts to pair • B.H. cross-section about 610-26 cm2 • Pairs  N Ne /AB • Energy in pairs over energy in gammas is proportional to Ne/AB, ie. almost luminosity! • Submitted as a LC Tech Note William Morse ILC R&D April 19, 2006

  8. Collaborating with W. Lohman and M. Ohlerich (DESY) William Morse ILC R&D April 19, 2006

  9. BeamCal and LumCal • Silicon Tungsten Calorimeters William Morse ILC R&D April 19, 2006

  10. BeamCal – 14mrad crossing angle William Morse ILC R&D April 19, 2006

  11. Maximum missing PT for smu → mu LSP vs LSP mass for different smu masses William Morse ILC R&D April 19, 2006

  12. Hermeticity Requirements • Hep-ph/040601 (2004) P. Bambade et al. • Experimental Implications for a LC of the SUSY Dark Matter Scenario • M(LSP) = 212GeV, M(stau) = 217 GeV • Need to veto ee→ee and ee→ee backgrounds at 10-3 level – being studied by Tel Aviv as part of FCAL effort. • BNL will study Bhabha pileup William Morse ILC R&D April 19, 2006

  13. Luminosity Normalization • Goal is precision measurement to 2 10-4 • Bhabha cross-section in forward direction William Morse ILC R&D April 19, 2006

  14. Possible Readout Architecture F. Lanni William Morse ILC R&D April 19, 2006

  15. Forward Detector R&D Synergy with LHC Effort • Simulation studies (p.20) • Integration studies (p.21) • Mechanical design (p.22) • Readout (p.23) • Detail detector design (p.24) • Material studies (p.25) • Hadronic calorimeter (p.26) • SiD web site: http://www-sid.slac.stanford.edu/ William Morse ILC R&D April 19, 2006

  16. Conclusions • Part of SiD Study since Fall 2005 (mostly U.S. based) • Part of FCAL Study since March 2006 (mostly Europe based) • Synergy with BNL S.C. Magnet Div. • Synergy with BNL Instrumentation Div. • Synergy with LHC Effort William Morse ILC R&D April 19, 2006

  17. Extra Slides William Morse ILC R&D April 19, 2006

  18. Where Do The Pairs Go? • Analytic Calculation William Morse ILC R&D April 19, 2006

  19. William Morse ILC R&D April 19, 2006

  20. Simulation Studies • Optimization of the design taking in to account space, cost and technology. This includes segmentation, both longitudinal and transverse and the dynamic range needed. We expect that the simulation studies will need a few iterations to help in optimizing the system integration aspects as well as cost. Preliminary decisions Dec. 06, Baseline Detector Layout: Mid ’07. The baseline should define in details the specifications and the parameters for the Beam Cal and the Luminosity Cal. Studies to be done by Physicists – assume baseline support. William Morse ILC R&D April 19, 2006

  21. Integration Studies • The forward region is very crowded and the space needs to be shared with the magnets of the final focus, beam pipes, forward calorimeters and their services. Detailed engineering studies to integrate and coordinate these requirements needs to be done at an early stage. Conceptual design for space allocation, services, access and installation by fall of ’06 and a baseline design by mid ’07. Design effort: ¼ Designer time. Baseline should be ready in one year to allow for space allocation between the different detector and first layout of services routing. William Morse ILC R&D April 19, 2006

  22. Mechanical Design • The forward calorimeters have special requirements. For example, we expect that the beam pipes will need to be integrated with the Beam Cal to achieve maximal coverage. Detailed mechanical design that takes into account the constraint imposed by the space limitation needs to take place. This should include the support of the calorimeters off the forward tube. Conceptual design end of ’06. Baseline design fall of ’07. Mechanical Engineer/Designer: ½ FTE. Technician: Prototype work on assembly concepts. William Morse ILC R&D April 19, 2006

  23. Readout • Define readout architecture, develop readout solutions and test some of the ideas in the Lab and/ or test beams. The readout work should include calculations of the Beam Cal feedback needed for the machine as well as for physics events. Conceptual design and detail specifications by end of ’06 , Baseline readout architecture 18 month from now. Electronic Eng: 1/3 of an electronic Eng. William Morse ILC R&D April 19, 2006

  24. Detail Detector Design • Once the readout and the mechanical layout are established a detail integration of the readout and the mechanical set up is needed. This will include the layout of the Si sensors, routing of the signals to the readout and cabling of the detector. William Morse ILC R&D April 19, 2006

  25. Material Studies • The radiation level in the forward direction implies that one will need to probably specify specialized Si material. One needs to select the materials and expose them to radiation levels equivalent to what will be seen at the ILC forward region over period of 5 years. BNL Instrumentation Division has a facility that will allow us to do this. Selection of material and radiation tests – end of ’06 early ’07. Selection of Sensor material mid ’08. ¼ designer for preparation of Si wafers for tests, plus material costs. William Morse ILC R&D April 19, 2006

  26. Hadronic Calorimeter • Depending on the technology choice for the Hadronic calorimeter for SiD, the Forward section of the Hadronic calorimeter might need to have a different technology. The R&D part will include choice of technology for the forward hadronic calorimeter and a detail design. Designer 1/3 time, Technician ½ time, ME 1/3 time.For the above we would like to test some of the ideas and build a mechanical prototype and, given the financial resources, to test it in a beam. This effort should be coordinated with other prototypes in SiD. William Morse ILC R&D April 19, 2006

  27. Total of Above Forward Region Manpower • One man-year each: tech, designer, ME, EE • 3 physicists  2 years • 1 Simulation • 1 Readout R&D coordination • 1 Integration of the Forward region • Present level of effort is 1.3 physicists and 0.2 tech, designer, ME, EE; so it will take 5 years, not 2 years. William Morse ILC R&D April 19, 2006

  28. Particle Flow • ILC is a precision measurement machine. • The hope is particle flow will give 30%/E0.5 jet resolution which is needed to do precision measurements. • Situation in Europe is about three dozen very smart people working 20% of their time on PFA. • The U.S. is effort is not as large. • US effort needs better coordination – BNL can make a difference. William Morse ILC R&D April 19, 2006

More Related