1 / 38

High Energy Neutrinos and Gravitational Wave Detectors: New Windows on the Universe

This talk discusses the use of high energy neutrino and gravitational wave detectors to explore non-electromagnetic "messengers" in astrophysics. It highlights their ability to penetrate deep into sources and travel unhindered across the universe, providing new insights into cosmic accelerators and the composition of cosmic rays. The talk also discusses the astrophysical suspects, such as gamma-ray bursts and active galactic nuclei, and their potential role in particle acceleration.

casarez
Télécharger la présentation

High Energy Neutrinos and Gravitational Wave Detectors: New Windows on the Universe

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High energy n & Gravitational wave detectors: New windows on the universe Eli Waxman Weizmann Institute, ISRAEL

  2. Non electro-magnetic “messengers” MeV n detectors: • Solar & SN1987A n’s • Stellar physics (Sun’s core, SNe core collapse) • n physics High energy n & GW detectors • New, non-EM windows • Penetrate deep into the source • Travel unhindered across the universe This talk • The Astrophysics case for HEN detectors • Relation to GW detectors • Fundamental physics

  3. High energy n’s: A new window >0.1 TeV n detectors: • Extendn horizon to extra-Galactic scale MeV n detectors limited to local (~Galactic) sources [10kt @ 1MeV1Gton @ TeV , sTeV/sMeV~106] • Study “Cosmic accelerators” [pg, pp  p’sn’s] • n physics

  4. HEN detector motivation:Cosmic accelerators log [dJ/dE] E-2.7 Galactic Protons E-3 Source: Supernovae(?) X-Galactic (?) Heavy Nuclei Source? Light Nuclei? Lighter Source? 1 1010 106 Cosmic-ray E [GeV] [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00]

  5. The 1020eV challenge v R B /G v G2 G2 2R l =R/G (dtRF=R/Gc) [Waxman 95, 04, Norman et al. 95]

  6. What do we know about >1019eV CRs? • X-Galactic - RL=e/eB=40ep,20kpc >> hdisk=0.1kpc (kpc=3 light yr) - L>1012 (G2/b) Lsun • Composition

  7. Composition clues HiRes 2005

  8. What do we know about >1019eV CRs? • X-Galactic - RL=e/eB=30ep,20kpc >> hdisk=0.1kpc (kpc=3 light yr) - L>1012 (G2/b) Lsun • Composition- light nuclei? • Spectrum

  9. Flux & Spectrum • E2(dN/dE)=E2(dQ/dE) teff. (teff. : p + gCMB N +p) • Assume: p, dQ/dE~(1+z)mE-a cteff [Mpc] log(E2dQ/dE) [erg/Mpc2 yr] GZK (CMB) suppression • >1019.3eV: consistent with • protons, E2(dQ/dE) ~1043.7 erg/Mpc3 yr + GZK • E2(dQ/dE) ~Const.: Consistent with shock acceleration [Katz & Waxman 09] [Waxman 1995; Bahcall & Waxman 03] [Krimsky 77; Bednarz & Ostrowski 98; Keshet & Waxman 05 cf. Lemoine & Revenu 06]

  10. What do we know about >1019eV CRs? • X-Galactic - RL=e/eB=30ep,20kpc >> hdisk=0.1kpc (kpc=3 light yr) - L>1012 (G2/b) Lsun • Composition- light nuclei? • Spectrum >1019.3eV: consistent with protons, E2(dQ/dE) ~1043.7 erg/Mpc3 yr + GZK • Sources: - L>1012 (G2/b) Lsun - E2(dQ/dE) ~1043.7 erg/Mpc3 yr - d(1020eV)<dGZK~100Mpc !! No L>1012 Lsun at d<dGZK  Transient Sources

  11. Anisotropy clues Biased (rsource~rgal for rgal>rgal ) CR intensity map (rsource~rgal) Galaxy density integrated to 75Mpc • Cross-correlation signal in the > 1019.7eV Auger data: Anisotropy @ 98% CL; Consistent with LSS (Few fold increase  >99% CL, but not 99.9% CL) • Correlation (~1.5s) suggests astrophysical (“bottom up”) accelerators [Kashti & Waxman 08] [Waxman, Fisher & Piran 1997]

  12. Suspects • - L>1012 (G2/b) Lsun • - E2(dQ/dE) ~1043.7 erg/Mpc3 yr • Gamma-ray Bursts (GRBs) • G~ 102.5, Lg~ 1019LSun L/G2 >1012 Lsun • (dn/dVdt)*E~10-9.5 /Mpc3 yr *1053.5erg • ~1044 erg/Mpc3 yr • Transient: DTg~10s, DTp/DTg ~1011 • Active Galactic Nuclei (AGN, Steady): • G~ 101 L>1014 LSun=few brightest • !! Non at d<dGZK •  Invoke: • “Dark” (proton only) AGN • L~ 1014 LSun , Dt~1month flares from • stellar disruptions [Waxman 95, Vietri 95, Milgrom & Usov 95] [Waxman 95] [Blandford 76; Lovelace 76] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08]

  13. Extra-galactic Jets: some pic’s Virgo cluster: 50 million light yrs M87

  14. Multi-wavelength observations X-ray Radio

  15. Chandra, Cen A

  16. Source physics challenges • GRB: 1019LSun, MBH~1Msun, M~1Msun/s, G~102.5 • AGN: 1014 LSun, MBH~109Msun, M~1Msun/yr, G~101 • MQ: 105 LSun, MBH~1Msun, M~10-8Msun/yr, G~100.5 Particle acceleration

  17. The GRB “engine” • Eg~1051.5erg (Eg,apparent~1053.5erg) + Dt~1ms •  Grav. Collapse of few Msun to BH (E~Mc2, Dt~GM/c3) • T~0.1-10s >> Dt~1ms  Accretion disk • 100MeV photons  G>100 • Progenitor: Compact Binary Merger (NS-NS, NS-BH) • Short (0.1s) bursts? Collapse of a massive star (>20Msun) Long bursts (10s)? [Goodman 86; Paczynski 86 Narayan, Paczynski & Piran 02] [Woosley 93; Paczynski 98]

  18. Long GRBs and SNe • 4 long GRBs associated with SN Ib/c (core collapse of massive He, C/O progenitors) - 3 haveEg,apparent~1048erg~10-5x1053erg, 1 intermediate - 2 SN-less long GRBs “SN Ib/c origin of long GRBs definitively established” • Some (<10-2) SN Ib/c produce (low L?) GRBs - What determines whether to GRB or not to GRB? (“failed” vs. “successful” jets?) - Do all core-collapse SN produce jets? - Do jets play a major role in ejecting the envelopes in all core-collapse SNe? (envelope ejection- major open Q) [Woosley & Bloom 06]

  19. Massive BHs @ Galactic centers [Salpeter 64; Zel’dovich & Novikov 64] • Existence inferred from - AGN activity - Stellar motions - Disk Water Masers MBH~106.5Msun MBH~107.5Msun • Robs~104RS Really BHs? [Genzel et al.] [Miyoshi et al. 95]

  20. MBH “progenitor” Q’s [e.g. Madau & Rees 01] • MBH “seeds” - ~100Msun from 1st generation massive stars - ~104Msun from direct collapse • What is the outcome of galaxy mergers? (BH merger by gas/stellar drag?) • The role of accretion vs. mergers? [e.g. Rees 78]

  21. Source physics challenges • GRB: 1019LSun, MBH~1Msun, M~1Msun/s, G~102.5 • AGN: 1014 LSun, MBH~109Msun, M~1Msun/yr, G~101 • MQ: 105 LSun, MBH~1Msun, M~10-8Msun/yr, G~100.5 Jet acceleration Energy extraction Particle acceleration Jet content (kinetic/Poynting) Radiation mechanisms

  22. HE n Astronomy • p + g N +p p0 2g ; p+  e+ + ne + nm + nm  Identify UHECR sources Study BH accretion/acceleration physics • E2dQ/dE=1044erg/Mpc3yr & tgp<1:  ~1 Giga-ton (~1 km3) detector required • If X-G p’s:  Identify primaries, determine f(z) [Waxman & Bahcall 99] [Berezinsky & Zatsepin 69]

  23. HE n experiments • Optical Cerenkov - South Pole Amanda: 677 OM, 0.05 km3 IceCube: +~800/yr OM (05/06…) 4800 OM=1 km3s - Mediterranean Antares: 12 lines (5/08), 900 OM, ~0.1 km3 Nestor: (?)  0.1 km3 km3Net: R&D  1 km3 • UHE: Radio Air shower • Aura, Ariana (in Ice) Auger (nt) • ANITA (Balloon) EUSO (?) • LOFAR

  24. GRB n’s • “Generic” baryonic jet n’s • Background free • (Successful/failed) Jet penetration of massive stellar envelope  Enhanced TeV n emission [Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez-Muniz & F. Halzen 99; Guetta et al. 04; Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04] [Meszaros & Waxman 01; Razzaque, Meszaros & Waxman 03, 04; Guetta & Granot 03; Dermer & Atoyan 03; Horiuchi & Ando 08]

  25. The current limit [Achterberg et al. 07 (The IceCube collaboration)]

  26. Jets driving core collapse SNe? • Mildly relativistic, G~3, E~1051.5erg jet driving a core-collapse SN  Nm(>100GeV)~1 (D/20Mpc)-2 /km2 • SN rate within 20Mpc ~10/yr [Razzaque, Meszaros & Waxman 04; Ando & Beacom 05; Horiuchi & Ando 08]

  27. AGN n models BBR05 Individual sources unlikely to be identified

  28. n- physics & astro-physics [Waxman & Bahcall 97] • p decay  ne:nm:nt = 1:2:0 (Osc.) ne:nm:nt = 1:1:1 t appearance experiment • GRBs: n-g timing (10s over Hubble distance) LI to 1:1016; WEP to 1:106 • EM energy loss of m’s (and p’s) • ne:nm:nt = 1:1:1 (E>E0) 1:2:2 • GRBs: E0~1015eV [Waxman & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Rachen & Meszaros 98; Kashti & Waxman 05]

  29. GW Astronomy NS-NS(BH) merger • Rapid mass motion (changing quadrapole moment)  GW: gmn=hmn+hmn, u~(wch)2/G P~Gw2(mv2)2/c5 h~(v/c)2 Rs/D ~ Rs2/d*D (Rs=2GM/c2) • Detection: • Rs(1Msun)=3*105cm=3km D*h~105cm Lisa science paper

  30. Km-scale detectors LIGO detector noise • LIGO (x3), Virgo (GEO600, TAMA) • NS-NS(BH): D*h~105cm  D~30Mpc GRB rate ~1/100yr  x10 improvement required (Advanced LIGO) • Core-collapse SNe (~10/yr out to 20Mpc)? If driven by Proto-NS oscillations (+ coupling of l=1 & l=2 modes)  v/c~0.1, ~0.1M, h*D~102.5cm [Ott et al. 06]

  31. MBHs @ Galactic centers • 1010 galaxies in Hubble volume Each undergone a merger in Hubble time  1 [x log(Mmax/Mmin)] MBH merger/yr • Open Q’s reminder: Seed mass, Merger/accretion • Rs(106.5Msun)=1012cm=107km [Volonteri 06]

  32. LISA: ~1012cm space detector • MBH In-spiral, merger & relaxation • Confirm: GR MBH • Study: MBH formation history MBH properties Stellar dynamics near MBH • MBH-10Msun BH merger Test GR MBH Lisa science paper

  33. GR & Cosmology tests • Detect GW (directly) • Confirm GR BHs • BH-BH mergers: “clean”, signal (should be) precisely calculable  Precision tests of strong field GR • Absolute DL(z): h~Rs/DL, w~(1+z)-1c/Rs Requires: Optical z; Challenge: Dq>1o Constrain geometry, Dark energy EOS..

  34. Outlook • HEN & GW detectors: New non-EM windows (unknown unknowns?) • Open Q’s (known unknowns) - Composition, origin & acceleration of CRs - GRB progenitors - Core collapse supernovae mechanism - Formation, evolution & properties of MBHs - Accretion, energy extraction & jet formation by BHs - The environment of MBHs - DL(z) - n Oscillations (t appearance) - gn Timing  LI to 1:1016; WEP to 1:106 - Confirm: GW, GR BH - Test strong field GR [DM annihilation detection, relic GW background] • EM identification crucial - Reduce backgrounds - Astro and fundamental physics implications

  35. & IceCube AMANDA

  36. The Mediterranean effort • ANTARES (NESTOR, NEMO) KM3NeT

  37. Back up slides

More Related