1 / 13

Mekanik

Mekanik. Sammanfattning. Krafter Inom mekaniken talar man ofta om krafter av olika slag, arbete och energi. Det finns många sorters krafter. Vissa samverkar med varandra, medan en del motverkar andra krafter. Krafterna brukar ofta ritas som pilar där pilens längd anger kraftens styrka.

hosea
Télécharger la présentation

Mekanik

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mekanik • Sammanfattning

  2. Krafter • Inom mekaniken talar man ofta om krafter av olika slag, arbete och energi. Det finns många sorters krafter. Vissa samverkar med varandra, medan en del motverkar andra krafter. Krafterna brukar ofta ritas som pilar där pilens längd anger kraftens styrka. • En kraft som vi alltid påverkas av är tyngdkraften. Den ser till att vi håller oss på marken och inte börjar sväva iväg. En kraft som motverkar tyngdkraften är normalkraften. Om du t.ex. står på marken så dras du nedåt av tyngdkraften. Men eftersom du inte rör dig nedåt, du står stilla (är i jämvikt), så måste det finnas en kraft som är lika stor som tyngdkraften och som är riktad åt motsatt håll. Den kraften kallas normalkraft. • Normalkraft är en av flera krafter som finns under samlingsnamnet motkraft

  3. Resultanter • Man kan sätta ihop två (eller fler) krafter till en kraft som motsvarar dem. Denna kraft kallas resultant. Således kan en resultant delas upp i flera krafter, så kallade komposanter. Här kan du se fler exempel

  4. Fritt fall • Om man släpper ett föremål en höjd så kommer föremålet att falla mot marken pga gravitationen (tyngdkraften) Föremålet kommer hela tiden att öka farten. Det accelererar. Föremålet kommer att öka hastigheten med ungefär 10 m/s varje sekund som föremålet faller. (Givetvis kommer föremålet att bromsas upp av luftmotståndet)

  5. Om vi sätter in kaströrelsen i ett diagram och sätter kastaren som koordinaten (0,0) går det att följa kastets rörelse i x- respektive y-led. • Kaströrelse • En kaströrelse kan delas upp i två rörelser helt oberoende av varandra, nämligen i sidled och i höjdled.

  6. Centralrörelse • När du snurrar nycklarna i nyckelbandet så kommer nycklarna att utföra en centralrörelse. Rörelsen kallas så för att den sker runt en punkt. Den kraft du använder för att tvinga nycklarna att göra en centralrörelse kallas Centipetalkraft.

  7. Centrifugalkraft • Centrifugalkraften är en s.k. upplevd kraft som brukar användas för att förklara att föremål "pressas utåt" när man snurrar dom kring i en cirkelformad bana . Centipetalkraften är hela tiden riktad in mot centralarörelsens centrum • Egentlingen är det så att en kropp som inte påverkas av några krafter antingen står still eller rör sig med samma (konstant) hastighet längs en rät linje. För att få kroppen att fara i en cirkelformad bana krävs en kraft som kan övervinna kroppens tröghet, vilket i sin tur utsätter kroppen för en acceleration in mot rotationscentrum (centripetal).

  8. Arbete • När du lyfter ett föremål från marken så motverkar du tyngdkraften. Du uträttar ett arbete. Men när du slutar lyfta och bara håller föremålet i luften så uträttar du inget arbete. Du måste alltså motverka en kraft för att uträtta ett arbete. Enheten för arbete är Newtonmeter (Nm). • Att lyfta en tunna upp på ett lastbilsflak kräver mycket kraft. Om du istället rullar tunnan uppför en ramp så behöver du inte använda en lika stor kraft. Dock måste du rulla tunnan en längre väg än vad du skulle behövt om du lyft den. Mekanikens gyllene regel: Det man vinner i kraft förlorar man i väg. • Du ska lyfta en tunna upp på ett lastbilsflak. Flaket är 1 meter över markytan. Tunnan väger 50 kg. Om du lyfter blir arbetet: Kraft * sträcka. Kraft = massan * tyngdfaktorn som är ungefär 9.82. Arbetet blir alltså: 50 kg * 9.82 N/kg * 1 meter = 491 Nm. • Om du i stället rullar tunnan upp för en 3.0 meter lång ramp blir arbetet det samma, men du behöver inte använda lika stor kraft. Arbetet = 491 Nm. Sträckan = 3.0 m. Kraften: arbete/sträcka = 491/3.0 ~ 164 N.

  9. Vridmoment • Om du försöker lyfta en tung sten så måste du använda en stor kraft. Om du däremot använder en hävstång så behöver du inte använda en lika stor kraft. Ju längre hävarmen (momentarmen) är desto mindre kraft behövs. • Det är samma när man gungar gungbräda. Ett barn som sitter långt ut på brädan kan väga upp vikten från en vuxen som sitter nära mitten. En liten kraft med lång hävarm motsvarar en stor kraft med kort hävarm. • Vridmoment, M, har enheten Newtonmeter (Nm). I en tvåarmad hävstång måste momnet stämma på båda sidorna för att man ska få jämnvikt (Vänster)Kraft *Längd=(Höger )Kraft*Längd

  10. Energi • Inom fysiken talar vi ofta om energi av olika slag, oftast lägesenergi och rörelseenergi. Enheten för energi är Joule (J). • Lägesenergi: Vi utgår från att ett föremål på marken har lägesenergin, Ep, 0 J. Då är marken en slags nollnivå. Föremålets massa, m, är 500 gram (0.5 kg). Vi lyfter föremålet till 2 meters höjd. Lägesenergin för föremålet som vi lyfter blir då: 0.5 kg * 9.82 N/kg * 2 m = 9.82 J (kan avrundas till 10 J). • Rörelseenergi: Om vi släpper föremålet som vi lyfte upp i förra exemplet så kommer lägesenergin successivt att övergå till rörelseenergi. Precis innan föremålet slår i marken så har all lägesenergi övergått till rörelseenergi. När föremålet slår i marken så har den bara lägesenergi.

  11. Tröghetslagen (Newtons fösta lag) • Varje kropp i ett förblir i sitt tillstånd av vila eller likformig och rätlinjig rörelse, om den inte påverkas av någon kraft, (eller om summan av alla krafter är noll) Bilen vill rakt fram om vi inte påverkar den med en kraft så att den svänger

  12. Accelerations lagen (Newtons andra lag) • "Den kraft F som verkar på en kropp är proportionell mot kroppens massa m och mot kroppens acceleration a." • F = ma, eller om vi slänger om variablerna lite, a = F/m • Kraften = massan muntiplicerad mer accelerationen • Kraften i Newton, Massan i kg och accelerationen

  13. Lagen om verkan och återverkan( Newtons tredje lag) • "Två Det vill säga om ett föremål A utsätter föremål B för en viss kraft så kommer B att utsätta A för en lika stor kraft men riktad åt motsatt håll. Krafter kommer alltid parvis. Det är viktigt att minnas att det handlar om krafter på två olika föremål. När man simmar puttar man vattnet bakåt och vattnet puttar en framåt, jetmotorer skjuter förbränningsgaser bakåt för att skjutas framåt, då en fågel viftar på vingarna för att flyga uppåt skjuter den luft nedåt så att luften skjuter fågeln uppåt. som verkar på varandra med krafter utsätter varandra för lika stora men motsatt riktade krafter."

More Related