1 / 39

Alex Bogacz, Vasiliy Morozov, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc.

Progress on the Linac and RLAs. Alex Bogacz, Vasiliy Morozov, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc. Morteza Aslaninejad, Cristian Bontoiu, J ü rgen Pozimski Imperial College. 0.9 GeV. 244 MeV. 146 m. 79 m. 0.6 GeV/pass. 3.6 GeV. 264 m. 12.6 GeV. 2 GeV/pass.

orea
Télécharger la présentation

Alex Bogacz, Vasiliy Morozov, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Progress on the Linac and RLAs Alex Bogacz, Vasiliy Morozov, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc. Morteza Aslaninejad, Cristian Bontoiu, Jürgen Pozimski Imperial College

  2. EUROnu Jan. 2011 0.9 GeV 244 MeV 146 m 79 m 0.6 GeV/pass 3.6 GeV 264 m 12.6 GeV 2 GeV/pass Linac and RLAs – ‘Big picture’ 1st part of this talk 2nd part of this talk • IDS Goals: • Define beamlines/lattices for all components • Resolve physical interferences, beamline crossings etc • Error sensitivity analysis • End-to-end simulation (machine acceptance) • Component count and costing

  3. EUROnu Jan. 2011 RLA Lattice Studies - Status • Presently completed lattices • Linear pre-accelerator – solenoid focusing • 4.5 pass Dogbone RLA × 2 (RLA I + RLA II) • Optimized multi-pass linac optics (bisected - quad profile along the linac) • Droplet return arcs (4) matched to the linacs • Transfer lines between the components – injection chicanes • Droplet arcs crossing – Double achromat Optics design • Chromatic corrections with sextupoles at Spr/Rec junctions • Error analysis for the Arc lattices (proof-or-principle) • Magnet misalignment tolerance – DIMAD Monte Carlo Simulation • Focusing errors tolerance – betatron mismatch sensitivity • Piece-wise end-to-end simulation with OptiM (pre-accelerator + RLA I)

  4. Muon Acceleration Mini-workshop Feb 2-5, 2010 http://casa.jlab.org/external/2010/MuonAcceleration_MiniWorkshop/

  5. EUROnu Jan. 2011 Sat Dec 13 22:36:02 2008 OptiM - MAIN: - D:\IDS\PreLinac\Sol\Linac_sol.opt 5 12 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 146 Solenoid Linac (244 -909 MeV) Transverse acceptance (normalized): (2.5)2eN = 30 mm rad Longitudinal acceptance: (2.5)2 sDpsz/mmc= 150 mm 8 medium cryos 17 MV/m 6 short cryos 15 MV/m 11 long cryos 17 MV/m 2.4 Tesla solenoid 1.4 Tesla solenoid 1.1 Tesla solenoid

  6. EUROnu Jan. 2011 Linac – tracking studies DONE SO FAR: • shielded two-shell solenoid modeled with POISSON • RF cavities modeled with SUPERFISH, COMSOL, & CST • front-to-end lattice for OptiM(solenoids, dipoles, quadrupoles, & sextupoles) • linac lattice tested in MAD-X • beam tracking using GPT • optical match of linac to cooling channel with one solenoid • beam-loading effects evaluated as negligible • standard for exchanging data files proposed

  7. EUROnu Jan. 2011 Solenoid Model (Superfish) outer coil shield inner coil ‘Soft-edge’ Solenoid

  8. EUROnu Jan. 2011 Two-cell cavity (201 MHz) – COMSOL MortezaAslaninejad CristianBontoiu JürgenPozimski

  9. EUROnu Jan. 2011 Linac-RLA Acceptance Initial phase-space after the cooling channel at 220 MeV/c bx,y = 2.74 m ax,y = -0.356 bg = 2.08

  10. EUROnu Jan. 2011 Thu Apr 08 13:54:52 2010 OptiM - MAIN: - C:\Working\IDS\PreLinac\Linac_sol.opt 30 30 Size_Y[cm] Size_X[cm] 0 0 0 Ax_bet Ay_bet Ax_disp Ay_disp 146 Linac Optics – Beam envelopes Transverse acceptance (normalized): (2.5)2eN = 30 mm rad Longitudinal acceptance: (2.5)2 sDpsz/mmc= 150 mm

  11. EUROnu Jan. 2011 Sat Dec 13 22:36:02 2008 OptiM - MAIN: - D:\IDS\PreLinac\Sol\Linac_sol.opt 5 12 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 146 Linac Optics – OptiM vs ELEGANT a = 19.5 cm a = 19.5 cm Yves Roblin

  12. EUROnu Jan. 2011 Longitudinal phase-space tracking MATHCAD OptiM Initial distribution Kevin Beard Alex Bogacz ELEGANT MATLAB Yves Roblin Morteza Aslaninejad

  13. EUROnu Jan. 2011 Cooling Channel – Linac Optics b B|| a

  14. EUROnu Jan. 2011 GPT Particle Tracking in the Linac cooling -> upper linac upper -> middle linac

  15. EUROnu Jan. 2011 Linac and RLAs - ‘field map’ tracking TO DO NEXT: • Include cavity filling effect on accelaration • Get a more accurate initial distribution • Design an improved cooling-to-linac section • Upgrade analytic cavity phasing – check against GPT • Complete linac lattice via tuning solenoids, phasing cavities, & tracking with GPT

  16. EUROnu Jan. 2011 Wed Jun 11 14:08:34 2008 OptiM - MAIN: - D:\IDS\Arcs\Arc2_match.opt Wed Jun 11 13:14:37 2008 OptiM - MAIN: - D:\IDS\Linacs_short\Linac1_fudg.opt 3 15 3 15 BETA_X&Y[m] DISP_X&Y[m] BETA_X&Y[m] DISP_X&Y[m] -3 0 -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 36.9103 0 BETA_X BETA_Y DISP_X DISP_Y 72 Linac-to-Arc – Chromatic Compensation E =1.8 GeV • ‘Matching quads’ are invoked • No 900 phase adv/cell maintained across the ‘junction’ • Chromatic corrections needed – two pairs of sextupoles

  17. Linac-to-Arc - Chromatic Corrections EUROnu Jan. 2011 initial uncorrected two families of sextupoles

  18. Mirror-symmetric ‘Droplet’ Arc – Optics Tue Jun 10 21:14:41 2008 OptiM - MAIN: - D:\IDS\Arcs\Arc1.opt 3 15 BETA_X&Y[m] DISP_X&Y[m] -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 130 EUROnu Jan. 2011 (bout = bin and aout = -ain , matched to the linacs) E =1.2 GeV 2 cells out transition 2 cells out transition 10 cells in

  19. Multi-pass FFAG Arc EUROnu Jan. 2011 • 2 or more passes through the same arc e.g. 5 GeV and 9 GeV • NS-FFAG arc lattice design • Achromatic basic cell with 90 horizontal phase advance • Automatic matching between inward and outward bending cells • Linear optics understood • Need to incorporate sextupole and higher-order field components to accommodate higher momenta Basic cell example trajectories dispersion Vasiliy Morozov COSY Infinity IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  20. EUROnu Jan. 2011 Multi-pass FFAG Arc Vasiliy Morozov simple closing of geometry when using similar cells r = 38.5 meters 300 60 C = 302 meters IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

  21. EUROnu Jan. 2011 Proposed SDDS Exchange Format http://casa.jlab.org/external/2010/MuonAcceleration_MiniWorkshop/SDDS/draft.html • ZGOUBI • ELEGANT • G4beamline • ICOOL • OptiM • COSY-Infinity • MAD-X • GPT • … Kevin Beard

  22. EUROnu Jan. 2011 Summary • Critical components of front-end linac modeled • Initial design of the front-end linac simulated • Design matching sections simulated • RLA arc lattice + chromaticity compensation simulated • Putting the pieces together for end-to-end simulations • Multi-pass (2) FFAG Arcs?

  23. Recent Progress on the Linac and RLAs Recent Progress on the Linac and RLAs Kevin B. Beard, Muons,Inc. & Alex Bogacz, V.Morozov, Y.Roblin Jefferson Lab LEMC2009 workshop 8-12 Jun 2009

  24. Recent Progress on the Linac and RLAs 0.9 GeV 244 MeV 146 m 79 m 0.6 GeV/pass 3.6 GeV 264 m 12.6 GeV 2 GeV/pass LEMC2009 workshop 8-12 Jun 2009

  25. Linear Pre-accelerator – 244 MeV to 909 MeV Transverse acceptance (normalized): (2.5)2= 30 mm rad Longitudinal acceptance: (2.5)2 pz/mc= 150 mm 8 medium cryos 17 MV/m 6 short cryos 15 MV/m 11 long cryos 17 MV/m 8m 5m 3m 2.4 Tesla solenoid 1.4 Tesla solenoid 1.1 Tesla solenoid Mini-workshop on Low Energy Muon Acceleration, CNU, February 2-5 , 2010

  26. Why another simulation? • OptiM – fast, interactive, design, matrix based 0th order design tool, symplectic soft edge solenoids, very good at tuning (free) • GPT – good at tracking ($) • G4beamline – tracking, Geant4 particle decays & interactions, energy depositions, showers, etc., not so good at tuning (free & open source) (v2.06) • http://g4beamline.muonsinc.com LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010

  27. LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010

  28. G4beamline input file z18.in ... # The "default" physics list is QGSP_BERT physics QGSP_BERT disable=Decay ###################### begin: common info ################################# # physical constants: param deg=3.14159/180. param muonmass=105.658 param c_mm_nS=299.792 ... upperCryomodule $Zcryo1 $j1 $Toff1 $kill1 upperCryomodule $Zcryo2 $j2 $Toff2 $kill2 upperCryomodule $Zcryo3 $j3 $Toff3 $kill3 upperCryomodule $Zcryo4 $j4 $Toff4 $kill4 upperCryomodule $Zcryo5 $j5 $Toff5 $kill5 upperCryomodule $Zcryo6 $j6 $Toff6 $kill6 middleCryomodule $Zcryo7 $j7 $Toff7 $kill7 middleCryomodule $Zcryo8 $j8 $Toff8 $kill8 middleCryomodule $Zcryo9 $j9 $Toff9 $kill9 middleCryomodule $Zcryo10 $j10 $Toff10 $kill10 middleCryomodule $Zcryo11 $j11 $Toff11 $kill11 middleCryomodule $Zcryo12 $j12 $Toff12 $kill12 middleCryomodule $Zcryo13 $j13 $Toff13 $kill13 middleCryomodule $Zcryo14 $j14 $Toff14 $kill14 lowerCryomodule $Zcryo15 $j15 $Toff15a $Toff15b $kill15 lowerCryomodule $Zcryo16 $j16 $Toff16a $Toff16b $kill16 lowerCryomodule $Zcryo17 $j17 $Toff17a $Toff17b $kill17 lowerCryomodule $Zcryo18 $j18 $Toff18a $Toff18b $kill18 lowerCryomodule $Zcryo19 $j19 $Toff19a $Toff19b $kill19 lowerCryomodule $Zcryo20 $j20 $Toff20a $Toff20b $kill20 lowerCryomodule $Zcryo21 $j21 $Toff21a $Toff21b $kill21 ... RF timing solenoid center Only 534 non-comment lines, produces 244 virtual detectors, 25 cryomodules beam stop LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

  29. Conclusions • G4beamline model is working well and in general agreement with other simulations • Essential step toward our long term goal of complete end-to-end simulations • Fine tuning is still in progress • Will soon begin particle interactions with the hardware LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

  30. Ez Ez LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010 Muons, Inc.

  31. phases partially adjusted phases from spreadsheet LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010

  32. Comparison of GPT, OptiM, g4beamline GPT KE[MeV] z[cm] G4beamline w/adj. φ's OptiM G4beamline w/OptiM's φ's KE[MeV] LEMC2009 workshop 8-12 Jun 2009 z[cm] Muons, Inc. MAG, Jun 14, 2010

  33. Every 3rd solenoid (adjusted from oncrest) 800 ET [MeV] 0 22nS t[nS] LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

  34. GPT G4beamline y[m] LEMC2009 workshop 8-12 Jun 2009 z[m] z[m] Sep 14, 2010 Muons, Inc.

  35. lost LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010

  36. those that made it to the end in G4beamline input t,Pz for acceptance OptiM generated input LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

  37. Synchrotron motion Pz ~ oncrest ~ 1 synch period LEMC2009 workshop 8-12 Jun 2009 t t Sep 14, 2010 • G4beamline model is working well and in general agreement with other simulations • Essential step toward our long term goal of complete end-to-end simulations • Fine tuning is still in progress • Will soon begin particle interactions with the hardware

  38. ∘RF ~ oncrest ~ 1 synch period #m LEMC2009 workshop 8-12 Jun 2009 z[m] Sep 14, 2010 Muons, Inc.

  39. LEMC2009 workshop 8-12 Jun 2009

More Related