1 / 1

Detector

D. F. 7. C. 8. U. 6.  1 : Source and simple lens doublet (“Einzellens") 2,5,9,10 : Deflection plates 3,6,8 : Simple lenses. 10. 4. 5. 12. Detector. 2. 14 : Laser 15 : Column of constant F 16 : MCP 17 : Phosphor screen 18 : CCD. 4 : Wien filter 7 : Deflection 

pink
Télécharger la présentation

Detector

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. D F 7 C 8 U 6  1 : Source and simple lens doublet (“Einzellens") 2,5,9,10 : Deflection plates 3,6,8 : Simple lenses 10 4 5 12 Detector 2 14 : Laser 15 : Column of constant F 16 : MCP 17 : Phosphor screen 18 : CCD 4 : Wien filter 7 : Deflection  11 : Focalisation quadrupole 12 : Deceleration plates 13 : Interection zone 9 1 11 13 3 ion Main proprieties z0 Tunable single longitudinal mode. Dual polarization stabilized He-Ne Sigmameter QCW Long & short time stabilization Pumped QCW 20 Hz, 515 nm Ti:Sa QCW, 150 µs Lambdameter WSU uncertain. +/- 0.041 m-1 L. Cabaret, Appl. Phys.B 94, 71 (2009) Nanosecond pulse Energy ≈ 400mJ Frequency doubled Nd:YAG 25 mJ @ 532 nm Pulsed Ti:Sa ~ 10 mJ @ 810 nm BBO Uncertainty ≈0.8 m-1 ~ 1 mJ @ 405 nm 15 ns L. Cabaret and C. Drag, Eur. Phys. J. Appl. Phys.37, 65 (2006) l0 = 0.045 mm a = 0.35 mm F = 427 Vm-1 j e = 0,926 ± 0,002 cm-1 Ai R Rmax 2P3/2 F2 = 4 14.097 m-1 F2 = 3 6.5575 m-1 F2 = 2 2.46 m-1 F2 = 1 I [F2]=2 F2 +1 eA=2467287(3) m-1 1S0 F1 = 5/2 Electron affinity (m-1) e neutral atom hn eA Laser pulse energy (µJ) negative ion Photodetachment microscopy with a pulsed laser R. J. Peláez, C. Blondel, C. Delsart and C. Drag Laboratoire Aimé-Cotton, Centre national de la recherche scientifique, batiment 505, Univ. Paris-sud, F-91405 Orsay cedex, France Photodetachment microscopy Pulsed laser Classical parameters Highest height Maximum radius Quantum parameters : Number of rings Interfranges distance Radial current density Principle: Y.N. Demkov et al., JETP Lett.34, 403 (1981) Photodetachment microscopy: C. Blondel et al., Phys. Rev . Lett.77, 3755 (1996) Photoionization microscopy: C. Nicole et al., Phys. Rev . Lett.88, 133001 (2002) Molecular photodetachment microscopy : C. Delsart et al., Phys. Rev . Lett.89, 183002 (2002) Results : electron affinity of 127I Electron Count Experiment set-up Barycenter Accumulation Radius (mm) Ponderomotive effect : electron oscillations in electromagnetic waves. 18 17 • Ponderomotive effect has been negligible, for two reasons: • i) Blue wavelength (405 nm for I-) • ii) Low energy ≈ 400µJ 16 15 Electron Affinity (eV) 14 Electron Affinity (eV) eA(127I) = 24672.867 (28) cm-1 = 3.0590453 (36) eV XXVI International Conference on Photonic, Electronic, and Atomic Collisions.Kalamazoo, Michigan 22 - 28 July 2009 R. J. Peláez et al.J. Phys. B. 42, 125001 (2009)

More Related