1 / 51

Haemodynamic Monitoring

Haemodynamic Monitoring. Theory and Practice. Haemodynamic Monitoring. Physiological Background Monitoring Optimising the Cardiac Output Measuring Preload Introduction to PiCCO Technology Practical Approach Fields of Application Limitations. Haemodynamic Monitoring.

vilmos
Télécharger la présentation

Haemodynamic Monitoring

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Haemodynamic Monitoring Theory and Practice

  2. Haemodynamic Monitoring Physiological Background Monitoring Optimising the Cardiac Output Measuring Preload Introduction to PiCCO Technology Practical Approach Fields of Application Limitations

  3. Haemodynamic Monitoring E. Introduction to PiCCO Technology • Principles of function • Thermodilution • Pulse contour analysis • Contractility parameters • Afterload parameters • Extravascular lung water • Pulmonary permeability

  4. Introduction to the PiCCO-Technology Parameters for guiding volume therapy Contractility Volumetric preload • static • - dynamic Differentiated Volume Management CO EVLW PiCCO Technology

  5. Introduction to the PiCCO-Technology – Function Principles of Measurement PiCCO Technology is a combination of transpulmonary thermodilution and pulse contour analysis CVC Lungs Pulmonary Circulation central venous bolus injection PULSIOCATH arterial thermodilution catheter Right Heart Left Heart PULSIOCATH PULSIOCATH Body Circulation

  6. EVLW RA RV PBV LA LV EVLW Introduction to the PiCCO-Technology – Function Principles of Measurement After central venous injection the cold bolus sequentially passes through the various intrathoracic compartments Bolus injection concentration changes over time (Thermodilution curve) Lungs Right heart Left heart The temperature change over time is registered by a sensor at the tip of the arterial catheter

  7. EVLW RA RV PBV LA LV EVLW Introduction to the PiCCO-Technology – Function Intrathoracic Compartments (mixing chambers) Intrathoracic Thermal Volume (ITTV) Pulmonary Thermal Volume (PTV) Largest single mixing chamber Total of mixing chambers

  8. Haemodynamic Monitoring E. Introduction to PiCCO Technology • Principles of function • Thermodilution • Pulse contour analysis • Contractility parameters • Afterload parameters • Extravascular Lung Water • Pulmonary Permeability

  9. Introduction to the PiCCO-Technology – Thermodilution Calculation of the Cardiac Output The CO is calculated by analysis of the thermodilution curve using the modified Stewart-Hamilton algorithm Tb Injection t (Tb - Ti) x Vi xK COTD a = Tbx dt D ∫ Tb = Blood temperature Ti = Injectate temperature Vi = Injectate volume ∫ ∆ Tb . dt = Area under the thermodilution curve K = Correction constant, made up of specific weight and specific heat of blood and injectate

  10. Introduction to the PiCCO-Technology – Thermodilution Thermodilution curves The area under the thermodilution curve is inversely proportional to the CO. Temperature 36,5 Normal CO: 5.5l/min 37 Temperature Time 36,5 low CO: 1.9l/min 37 Temperature Time 36,5 High CO: 19l/min 37 10 5 Time

  11. Introduction to the PiCCO –Technology – Thermodilution Transpulmonary vs. Pulmonary Artery Thermodilution Transpulmonary TD (PiCCO) Pulmonary Artery TD (PAC) Aorta PA Pulmonary Circulation Lungs LA central venous bolus injection RA LV RV PULSIOCATH arterial thermo-dilution catheter Right Heart Left heart Body Circulation In both procedures only part of the injected indicator passes the thermistor. Nonetheless the determination of CO is correct, as it is not the amount of the detected indicator but the difference in temperature over time that is relevant!

  12. Introduction to the PiCCO –Technology – Thermodilution Validation of the Transpulmonary Thermodilution n (Pts / Measurements) r Comparison with Pulmonary Artery Thermodilution bias ±SD(l/min) Friedman Z et al., Eur J Anaest, 2002 17/102 -0,04 ± 0,41 0,95 Della Rocca G et al., Eur J Anaest 14, 2002 60/180 0,13 ± 0,52 0,93 Holm C et al., Burns 27, 2001 23/218 0,32 ± 0,29 0.98 Bindels AJGH et al., Crit Care 4, 2000 45/283 0,49 ± 0,45 0,95 Sakka SG et al., Intensive Care Med 25, 1999 37/449 0,68 ± 0,62 0,97 Gödje O et al., Chest 113 (4), 1998 30/150 0,16 ± 0,31 0,96 McLuckie A. et a., Acta Paediatr 85, 1996 9/27 0,19 ± 0,21 - / - Comparison with the Fick Method Pauli C. et al., Intensive Care Med 28, 2002 18/54 0,03 ± 0,17 0,98 Tibby S. et al., Intensive Care Med 23, 1997 24/120 0,03 ± 0,24 0,99

  13. Introduction to the PiCCO-Technology – Thermodilution Extended analysis of the thermodilution curve From the characteristics of the thermodilution curve it is possible to determine certain time parameters Tb Injection Recirculation In Tb e-1 MTt DSt t MTt: Mean Transit time the mean time required for the indicator to reach the detection point DSt: Down Slope time the exponential downslope time of the thermodilution curve Tb = blood temperature; lnTb = logarithmic blood temperature; t = time

  14. Introduction to the PiCCO-Technology – Thermodilution Calculation of ITTV and PTV By using the time parameters from the thermodilution curve and the CO ITTV and PTV can be calculated Tb Injection Recirculation In Tb e-1 MTt DSt t Pulmonary Thermal Volume PTV = Dst x CO Intrathoracic Thermal Volume ITTV = MTt x CO

  15. EVLW RA RV PBV LA LV EVLW Einführung in die PiCCO-Technologie – Thermodilution Calculation of ITTV and PTV Intrathoracic Thermal Volume (ITTV) Pulmonary Thermal Volume (PTV) PTV = Dst x CO ITTV = MTt x CO

  16. EVLW RA RV PBV LA LV EVLW Introduction to the PiCCO –Technology – Thermodilution Volumetric preload parameters – GEDV Global End-diastolic Volume (GEDV) ITTV PTV GEDV GEDV is the difference between intrathoracic and pulmonary thermal volumes

  17. EVLW RA RV PBV LA LV EVLW Introduction to the PiCCO –Technology – Thermodilution Volumetric preload parameters – ITBV Intrathoracic Blood Volume (ITBV) GEDV PBV ITBV ITBV is the total of the Global End-Diastolic Volume and the blood volume in the pulmonary vessels (PBV)

  18. 3000 2000 1000 0 0 1000 2000 3000 Introduction to the PiCCO-Technology – Thermodilution Volumetric preload parameters – ITBV ITBV is calculated from the GEDV by the PiCCO Technology Intrathoracic Blood Volume (ITBV) ITBVTD (ml) ITBV = 1.25 * GEDV – 28.4 [ml] GEDV(ml) GEDV vs. ITBV in 57 Intensive Care Patients Sakka et al, Intensive Care Med 26: 180-187, 2000

  19. Introduction to the PiCCO-Technology Summary and Key Points - Thermodilution • PiCCO Technology is a less invasive method for monitoring the volume status and cardiovascular function. • Transpulmonary thermodilution allows calculation of various volumetric parameters. • The CO is calculated from the shape of the thermodilution curve. • The volumetric parameters of cardiac preload can be calculated through advanced analysis of the thermodilution curve. • For the thermodilution measurement only a fraction of the total injected indicator needs to pass the detection site, as it is only the change in temperature over time that is relevant.

  20. Haemodynamic Monitoring E. Introduction to PiCCO Technology • Principles of function • Thermodilution • Pulse contour analysis • Contractility parameters • Afterload parameters • Extravascular Lung Water • Pulmonary Permeability

  21. Introduction to the PiCCO-Technology – Pulse contour analysis Calibration of the Pulse Contour Analysis The pulse contour analysis is calibrated through the transpulmonary thermodilution and is a beat to beat real time analysis of the arterial pressure curve Transpulmonary Thermodilution Pulse Contour Analysis Injection COTPD = SVTD HR T = blood temperature t = time P = blood pressure

  22.  Patient- specific calibration factor (determined by thermodilution) Area under the pressure curve Aortic compliance Shape of the pressure curve Introduction to the PiCCO-Technology – Pulse contour analysis Parameters of Pulse Contour Analysis Cardiac Output P(t) dP ( PCCO = cal • HR • + C(p) • ) dt SVR dt Systole Heart rate

  23. Introduction to the PiCCO-Technology – Pulse contour analysis Validation of Pulse Contour Analysis Comparison with pulmonary artery thermodilution r n (Pts / Measurements) bias ±SD (l/min) Mielcket al., J Cardiothorac Vasc Anesth 17 (2), 2003 22 / 96 -0,40 ± 1,3 - / - Rauch Het al., Acta Anaesth Scand 46, 2002 25 / 380 0,14 ± 0,58 - / - Felbinger TWet al., J Clin Anesth 46, 2002 20 / 360 -0,14 ± 0,33 0,93 Della Rocca Get al., Br J Anaesth 88 (3), 2002 62 / 186 -0,02 ± 0,74 0,94 Gödje Oet al., Crit Care Med 30 (1), 2002 24 / 517 -0,2 ± 1,15 0,88 Zöllner Cet al., J Cardiothorac Vasc Anesth 14 (2), 2000 19 / 76 0,31 ± 1,25 0,88 Buhre Wet al., J Cardiothorac Vasc Anesth 13 (4), 1999 12 / 36 0,03 ± 0,63 0,94

  24. SVmax SVmin SVmean Introduction to the PiCCO-Technology – Pulse Contour Analysis Parameters of Pulse Contour Analysis Dynamic parameters of volume responsiveness – Stroke Volume Variation SVmax – SVmin SVV = SVmean The Stroke Volume Variation is the variation in stroke volume over the ventilatory cycle, measured over the previous 30 second period.

  25. Introduction to the PiCCO-Technology – Pulse Contour Analysis Parameters of Pulse Contour Analysis Dynamic parameters of volume responsiveness – Pulse Pressure Variation PPmax PPmin PPmean PPmax – PPmin PPV = PPmean The pulse pressure variation is the variation in pulse pressure over the ventilatory cycle, measured over the previous 30 second period.

  26. Introduction to the PiCCO-Technology – Pulse contour analysis Summary pulse contour analysis - CO and volume responsiveness • The PiCCO technology pulse contour analysis is calibrated by transpulmonary thermodilution • PiCCO technology analyses the arterial pressure curve beat by beat thereby providing real time parameters • Besides cardiac output, the dynamic parameters of volume responsiveness SVV (stroke volume variation) and PPV (pulse pressure variation) are determined continuously

  27. Haemodynamic Monitoring E. Introduction to PiCCO Technology • Principles of function • Thermodilution • Pulse contour analysis • Contractility parameters • Afterload parameters • Extravascular Lung Water • Pulmonary Permeability

  28. Introduction to the PiCCO-Technology – Contractility parameters Contractility Contractility is a measure for the performance of the heart muscle • Contractility parameters of PiCCO technology: • dPmx (maximum rate of the increase in pressure) • GEF (Global Ejection Fraction) • CFI (Cardiac Function Index) kg

  29. Introduction to the PiCCO-Technology – Contractility parameters Contractility parameter from the pulse contour analysis dPmx = maximum velocity of pressure increase The contractility parameter dPmx represents the maximum velocity of left ventricular pressure increase.

  30. Introduction to the PiCCO-Technology – Contractility parameters Contractility parameter from the pulse contour analysis dPmx = maximum velocity of pressure increase n = 220 y = -120 + (0,8* x) r = 0,82 p < 0,001 femoral dP/max [mmHg/s] 2000 1500 1000 500 0 0 500 1000 1500 2000 LV dP/dtmax [mmHg/s] de Hert et al., JCardioThor&VascAnes 2006 dPmx was shown to correlate well with direct measurement of velocity of left ventricular pressure increase in 70 cardiac surgery patients

  31. Introduction to the PiCCO-Technology – Contractility parameters Contractility parameters from the thermodilution measurement GEF = Global Ejection Fraction LA 4 x SV GEF = GEDV RA LV RV • is calculated as 4 times the stroke volume divided by the global end-diastolic volume • reflects both left and right ventricular contractility

  32. Introduction to the PiCCO-Technology – Contractility parameters Contractility parameters from the thermodilution measurement GEF = Global Ejection Fraction sensitivity 1 15 18 8 12 16 10 0,8 19 5 0,6 20 D FAC, % -20 -10 10 20 0,4 22 -5 0,2 -10 r=076, p<0,0001 n=47 0 0,2 0,4 0,6 0,8 0 -15 1 specifity D GEF, % Combes et al, Intensive Care Med 30, 2004 Comparison of the GEF with the gold standard TEE measured contractility in patients without right heart failure

  33. Introduction to the PiCCO-Technology – Contractility parameters Contractility parameters from the thermodilution measurement CFI = Cardiac Function Index CI CFI = GEDVI • is the CI divided by global end-diastolic volume index • is - similar to the GEF – a parameter of both left and right ventricular contractility

  34. Introduction to the PiCCO-Technology – Contractility parameters Contractility parameters from the thermodilution measurement CFI = Cardiac Function Index sensitivity 1 15 3 4 2 3,5 10 0,8 5 0,6 5 D FAC, % -20 -10 10 20 0,4 -5 6 0,2 -10 r=079, p<0,0001 n=47 0 0,2 0,4 0,6 0,8 0 -15 1 specificity D GEF, % Combes et al, Intensive Care Med 30, 2004 CFI was compared to the gold standard TEE measured contractility in patients without right heart failure

  35. Haemodynamic Monitoring E. Introduction to PiCCO technology • Functions • Thermodilution • Pulse contour analysis • Contractility parameters • Afterload parameters • Extravascular Lung Water • Pulmonary Permeability

  36. Introduction to the PiCCO –Technology – Afterload parameter Afterload parameter SVR = Systemic Vascular Resistance (MAP – CVP) x 80 SVR = CO • is calculated as the difference between MAP and CVP divided by CO • as an afterload parameter it represents a further determinant of the cardiovascular situation • is an important parameter for controlling volume and catecholamine therapies MAP = Mean Arterial Pressure CVP = Central Venous Pressure CO = Cardiac Output 80 = Factor for correction of units

  37. Introduction to the PiCCO –Technology – Contractility and Afterload Summary and Key Points • The parameter dPmx from the pulse contour analysis as a measure of the left ventricular myocardial contractility gives important information regarding cardiac function and therapy guidance • The contractility parameters GEF and CFI are important parameters for assessing the global systolic function and supporting the early diagnosis of myocardial insufficiency • The Systemic Vascular Resistance SVR calculated from blood pressure and cardiac output is a further parameter of the cardiovascular situation, and gives additional information for controlling volume and catecholamine therapies

  38. Haemodynamic Monitoring E. Introduction to PiCCO technology • Principles of function • Thermodilution • Pulse contour analysis • Contractility parameters • Afterload parameters • Extravascular Lung Water • Pulmonary Permeability

  39. Introduction to the PiCCO –Technology – Extravascular Lung Water Calculation of Extravascular Lung Water (EVLW) ITTV – ITBV = EVLW The Extravascular Lung Water is the difference between the intrathoracic thermal volume and the intrathoracic blood volume. It represents the amount of water in the lungs outside the blood vessels.

  40. Introduction to the PiCCO –Technology – Extravascular Lung Water Validation of Extravascular Lung Water EVLW from the PiCCO technology has been shown to have a good correlation with the measurement of extravascular lung water via the gravimetry and dye dilution reference methods Gravimetry Dye dilution ELWI by PiCCO ELWIST (ml/kg) Y = 1.03x + 2.49 40 25 20 30 n = 209 r = 0.96 15 20 10 10 5 R = 0,97 P < 0,001 0 0 0 10 20 30 0 5 10 15 20 25 ELWI by gravimetry ELWITD (ml/kg) Sakka et al, Intensive Care Med 26: 180-187, 2000 Katzenelson et al,Crit Care Med 32 (7), 2004

  41. Introduction to the PiCCO –Technology – Extravascular Lung Water EVLW as a quantifier of lung edema High extravascular lung water is not reliably identified by blood gas analysis ELWI (ml/kg) 30 20 10 0 0 50 150 250 350 450 550 PaO2 /FiO2 Boeck J, J Surg Res 1990; 254-265

  42. Introduction to the PiCCO –Technology – Extravascular Lung Water EVLW as a quantifier of lung oedema Extravascular lung water index (ELWI) normal range:3 – 7 ml/kg Normal range Pulmonary oedema ELWI = 7 ml/kg ELWI = 19 ml/kg ELWI = 14 ml/kg ELWI = 8 ml/kg

  43. Introduction to the PiCCO –Technology – Extravascular Lung Water EVLW as a quantifier of lung oedema Chest x ray – does not reliably quantify pulmonary oedema and is difficult to judge, particularly in critically ill patients Dradiographic score 80 r = 0.1 p > 0.05 60 40 20 0 -15 -10 10 15 -20 DELWI -40 -60 -80 Halperin et al, 1985, Chest 88: 649

  44. Mortality (%) 100 n = 81 90 *p = 0.002 n = 373 80 80 70 60 70 50 60 40 50 30 40 20 30 10 0 20 0 0 4 - 6 6 - 8 8 - 10 10 - 12 12 - 16 16 - 20 > 20 ELWI (ml/kg) Introduction to the PiCCO –Technology – Extravascular Lung Water Relevance of EVLW Assessment The amount of extravascular lung water is a predictor for mortality in the intensive care patient Mortality(%) < 7 n = 45 7 - 14 n = 174 14 - 21 n = 100 > 21 n = 54 ELWI (ml/kg) Sturm J in: Lewis, Pfeiffer (eds): Practical Applications of Fiberoptics in Critical Care Monitoring, Springer Verlag Berlin - Heidelberg - NewYork 1990, pp 129-139 Sakka et al , Chest 2002

  45. Introduction to the PiCCO –Technology – Extravascular Lung Water Relevance of EVLW Assessment Volume management guided by EVLW can significantly reduce time on ventilation and ICU length of stay in critically ill patients, when compared to PCWP oriented therapy, Ventilation Days Intensive Care days * p ≤ 0,05 n = 101 * p ≤ 0,05 22 days 9 days 15 days 7 days EVLW Group PAC Group EVLW Group PAC Group Mitchell et al, Am Rev Resp Dis 145: 990-998, 1992

  46. Haemodynamic Monitoring E. Introduction to PiCCO Technology • Principles of function • Thermodilution • Pulse contour analysis • Contractility parameters • Afterload parameters • Extravascular Lung Water • Pulmonary Permeability

  47. Introduction to PiCCO Technology – Pulmonary Permeability Differentiating Lung Oedema PVPI = Pulmonary Vascular Permeability Index EVLW EVLW PVPI = PBV PBV • is the ratio of Extravascular Lung Water to Pulmonary Blood Volume • is a measure of the permeability of the lung vessels and as such can classify the type of lung oedema (hydrostatic vs. permeability caused)

  48. Introduction to PiCCO Technology – Pulmonary Permeability Classification of Lung Oedema with the PVPI Difference between the PVPI with hydrostatic and permeability lung oedema: Lung oedema hydrostatic permeability PBV PBV EVLW EVLW EVLW EVLW PBV PBV PVPI normal (1-3) PVPI raised (>3)

  49. Introduction to PiCCO Technology – Pulmonary Permeability Validation of the PVPI PVPI can differentiate between a pneumonia caused and a cardiac failure caused lung oedema. PVPI 4 3 2 Pneumonia Cardiac insufficiency 16 patients with congestive heart failure and acquired pneumonia. In both groups EVLW was 16 ml/kg. Benedikz et al ESICM 2003, Abstract 60

  50. Introduction to PiCCO Technology – Pulmonary Permeability Clinical Relevance of the Pulmonary Vascular Permeability Index EVLWIanswers the question: How much water is in the lungs? PVPIanswers the question: Why is it there? and can therefore give valuable aid for therapy guidance!

More Related