1 / 55

I composti di coordinazione

I composti di coordinazione. Si è definito composto di coordinazione un composto in cui l'atomo centrale forma un numero di legami s maggiore del suo numero di ossidazione quando esso sia maggiore o uguale a 0. Composto di coordinazione. Il metallo mette a disposizione orbitali vuoti

xenon
Télécharger la présentation

I composti di coordinazione

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. I composti di coordinazione • Si è definito composto di coordinazione un composto in cui l'atomo centrale forma un numero di legami s maggiore del suo numero di ossidazione quando esso sia maggiore o uguale a 0.

  2. Composto di coordinazione • Il metallo mette a disposizione orbitali vuoti • Il legante mette a disposizione una coppia elettronica e un orbitale • Sono legami molto polari, e la polarizzazione è diretta verso l’atomo che mette in compartecipazione la coppia elettronica= atomo donatore

  3. Esempi di leganti

  4. Gli equilibri di formazione dei complessi Per aggiunta di un legante, per esempio NH3, ad una soluzione contenente uno ione metallico si ha un equilibrio del tipo: Mn+ + 6 NH3 M(NH3)6n+ La posizione di questo equilibrio dipende dal valore della costante: Kst = ____________ che è chiamata costante di stabilità o di formazione del complesso. [M(NH3)6n+] [Mn+] [NH3]6

  5. Equilibri di formazione dei complessi La formazione di un complesso (vedi “composto di coordinazione”) é il modo piu’ efficace per “sequestrare” uno ione metallico, ovvero per rimuovere da una soluzione uno ione “indesiderato”. Essenziamente, si tratta di un meccanismo utilizzato in natura per prevenire la presenza in ambiente cellulare, di ioni metallici “tossici”. Lo stesso principio é utilizzato dai farmacologi quando devono “veicolare” uno ione metallico attraverso l’organismo senza che esso si liberi in soluzione. Utilizzando I diversi valori della costanti di formazione si puo’ “ingabbiare” uno ione metallico in un certo ambiente e poi “liberarlo” una volta giunti in un ambiente diverso.

  6. Ag(NH3)2+ 1,4.107 Ni(CN)42- 1,0.1030 Ag(CN)2- 1,0.1021 Ni(NH3)62+ 5,0.108 Fe(CN)64- 1,0.1024 Zn(NH3)42+ 3,3.109 Fe(CN)63- 1,0.1031 Zn(OH)42- 3,2.1015 Co(NH3)62+ 1,3.105 Zn(CN)42- 1,0.1017 Co(NH3)63+ 2,3.1034 Cu(NH3)42+ 5,0.1012 Co(CN)63- 1,0.1064 Cu(CN)43- 1,0.1028 Cu(NH3)2+ 1,0.107 Costanti di formazione di alcuni ioni complessi a 298 K

  7. Ag(NH3)2+ 1,4.107 Ni(CN)42- 1,0.1030 Ag(CN)2- 1,0.1021 Ni(NH3)62+ 5,0.108 Fe(CN)63- 1,0.1031 Zn(OH)42- 3,2.1015 Co(NH3)62+ 1,3.105 Zn(CN)42- 1,0.1017 Co(NH3)63+ 2,3.1034 Cu(NH3)42+ 5,0.1012 10.07 Costanti di formazione di alcuni ioni complessi a 298 K Lo ione CN- è molto piu’ efficace NH3 per complessare sia lo ione Ag+ che lo ione Ni 2+

  8. La costante relativa alla reazione di dissociazione del complesso: M(NH3)6n+  Mn+ + 6 NH3 Si chiama costante di instabilità ed è data da: Kinst = ____________ Kinst = 1/ Kst [Mn+] [NH3]6 [M(NH3)6n+]

  9. Esempi di calcolo Calcolare al concentrazione di ioni Ni2+ che rimangono liberi in soluzione in presenza di NH3 0.1 M, partendo da una concentrazione iniziale di Ni2+ pari a 1.0 x 10-3 M. Kinst = 1.8 x 10-9 = _________________ 1.8 x 10-9 _________________ x = 2.6 10-6 x [0.1-6(1.0 10-3 –x)]6 1.0 10-3 -x x (0.1-6.0 10-3 )6 1.0 10-3

  10. Cinetica chimica Cinetica e termodinamica Velocità di reazione Ordine di reazione Reazioni del 1° ordine Meccanismi di reazione Teoria delle collisioni Catalisi

  11. Aspetto cinetico e termodinamico di una reazione DG° e Keq ci dicono se una reazione avviene spontaneamente È indispensabile però sapere anche quanto impiega una reazione a raggiungere il proprio stato di equilibrio Spontaneità e velocità non hanno nessuna correlazione tra loro

  12. Esempio N2O4 2NO2 All’equilibrio N2O4 é dissociato del 35% Quale é la concentrazione delle due specie durante la reazione? E come é la scala in funzione del tempo, cosa viene fuori?

  13. Velocità di Reazione La velocità di una reazione è riferita alla variazione nel tempo della concentrazione di ciascuno dei reagenti o dei prodotti N2O4 2NO2

  14. Velocità di Reazione La velocità di una reazione è riferita alla variazione nel tempo della concentrazione di ciascuno dei reagenti o dei prodotti N2O4 2NO2 d[N2O4] Vreaz= - dt

  15. d[N2O4] V= - dt Reazione del 1° ordine 2NO2 N2O4 k [N2O4] = La velocità iniziale dipende SOLO dalla concentrazione del reagente

  16. Reazione del 1° ordine 2NO2 +1/2O2 N2O5 La velocità iniziale dipende SOLO dalla concentrazione del reagente

  17. Cinetica del 1° ordine 2NO2 + ½ O2 N2O5

  18. Cinetica del 1° ordine e -kt In una cinetica del 1° ordine, la variazione della concentrazione segue sempre un andamento ESPONENZIALE. La funzione esponenziale Ae(-kt) ha un andamento ben preciso peculiare

  19. Cinetica del 1° ordine 2NO2 + ½ O2 N2O5

  20. Cinetica del 1° ordine 2NO2 + ½ O2 N2O5 In sostanza, l’unico termine che definisce la velocità di reazione é il valore dell’esponenziale, ovvero k (che si chiama costante di velocità).

  21. Cinetica del 1° ordine 2NO2 + ½ O2 N2O5

  22. Cinetica del 1° ordine Diverso valore di k =diversa velocità di reazione Tutte sono pero’ cinetiche del 1° ordine K=100 s-1 K=200 s-1 K=400 s-1

  23. Cinetica del 1° ordine 2NO2 + ½ O2 N2O5

  24. Cinetica del 1° ordine In una cinetica del 1° ordine la velocità di reazione dipende solo dal valore della costante di velocità k Il tempo che una reazione impiega per procedere del 50% é costante. Quindi una cinetica del 1° ordine puo’ essere completamente descritta dal valore del Tempo di dimezzamento (il tempo che impiega la reazione per diminuire al 50% del valore iniziale la concentrazione del reagente) Tutte le reazioni di decadimento radioattivo (vedi lez. 2) sono TUTTE reazioni del 1° ordine

  25. Cinetica Non tutte le reazioni sono del 1° ordine, ovvero seguono una legge cinetica come quella che abbiamo descritto fino ad adesso

  26. Reazione del 2° ordine 2HI H2 +I2 La velocità iniziale dipende dalla concentrazione di ENTRAMBI I REAGENTI

  27. Reazione del 2° ordine 2HI H2 +I2 La velocità iniziale dipende dalla concentrazione di ENTRAMBI I REAGENTI In generale noi definiamo l’ordine di reazione in funzione di quanti sono i composti da cui dipende la velocità di reazione e dai loro esponenti

  28. Cinetica e Meccamismo di reazione Una reazione del 1° ordine é uan reazione che avviene solo in base alla presenza del reagente. Dipende solo da un reagente Una reazione del 2° ordine é uan reazione che dipende dalla concentrazione di due reagenti. Entrambi devono essere presenti ed é il loro prodotto che determina l’andamento della reazione

  29. Meccanismo delle reazioni È il modo dettagliato a livello molecolare con cui i reagenti si combinano per dare i prodotti a determinare la velocità di reazione In generale una reazione avviene attraverso uno o più passaggi intermedi detti processi elementari, che ne descrivono il meccanismo

  30. Teoria delle Collisioni Per poter reagire due particelle devono collidere tra loro Si avrà reazione solo se le particelle collidenti possiedono una energia maggiore di un valore minimo detto energia di attivazione In questo caso si parla di urto efficace

  31. NO2 + CO NO + CO2 Esempio Reazione del 2° ordine

  32. NO2 + CO NO + CO2 Esempio Reazione del 2° ordine La specie intermedia è più instabile rispetto ai reagenti ed ai prodotti. Possiede una Energia Potenziale piu’ elevata. Pertanto Essa puo’ evolvere nella stessa maniera o verso i reagenti o verso i prodotti. L’evento critico che determina la velocità di reazione è l’incontro tra due molecole di NO2 e di CO che porta alla formazione dello stato intermedio

  33. La probabilità che ci sia un incontro tra le due molecole dipende dalla loro concentrazione. DA QUESTO DERIVA LA CINETICA DEL secondo ORDINE. Però non basta un urto tra le due particelle….

  34. k = A e-Ea/RT L’urto deve essere EFFICACE. I reagenti devono avere energia cinetica sufficiente per portare alla formazione del complesso attivato. Inoltre devono urtarsi con la giusta orientazione reciproca

  35. Relazione di Arrhenius Esprime la dipendenza di k dalla temperatura: k = A e-E/RT R= costante dei gas T= temperatura assoluta E= energia di attivazione A= fattore di frequenza dell’urto

  36. Energia di Attivazione L’energia di Attivazione è la barriera energetica che si deve superare affinché si formi il complesso attivato e la reazione possa procedere verso la formazione dei prodotti Essa determina la Costante di velocità. Maggiore è l’Energia di Attivazione, minore sarà la costante di velocità k = Ae-Ea/RT

  37. NO2 + CO NO + CO2 Esempio

  38. Ordine di reazione La velocità iniziale di una reazione dipende dalla concentrazione dei reagenti vreazione = k [A]x[B]y K= costante cinetica della reazione (costante a T costante) x ordine della reazione rispetto al componente A y ordine della reazione rispetto al componente B x+y ordine complessivo della reazione

  39. Ordine di reazione e molecolarità dellla reazione L’ordine della cinetica di una reazione puo’ coincidere con la MOLECOLARITA’ della reazione Cinetica del 1° ordine N2O5 2NO2 + ½ O2 V=k[N2O5] Cinetica del 2° ordine H2 +I2 2HI V=k[H2] [I2] Ma non sempre..

  40. Ordine di reazione e molecolarità dellla reazione In generale le costanti x e y NON coincidono con i coefficienti stechiometrici (molecolarità). H2 + Br2 2HBr vreazione = k [H2][Br2]1/2 Ordine di reazione= 1,5 PERCHE’?

  41. Rate limiting Step (stadio limitante della velocità) Ciascuno dei passaggi intermedi ha una sua velocità di reazione La velocità complessiva è determinata DAL PIU’ LENTO DEI PASSAGGI INTERMEDI

  42. I processi elementari H2 + Br2 2HBr Questa reazione avviene attraverso una serie di processi elementari: Br2 2Br• Formazione di radicale (veloce) Br • + H2  HBr + H • stadio lento H •+ Br2  HBr + Br • propagazione della catena (veloce) 2Br •  Br2 Reazione di terminazione delle catena (veloce)

  43. vreazione = k’ [H2][Br] La concentrazione di Br non può però essere dedotta sperimentalmente, quindi va espressa in funzione di quella di Br2 Br2 2Br Keq = [Br]2/[Br2] [Br] = Keq1/2 [Br2]1/2 vreazione = k’Keq [H2] [Br2]1/2= k [H2][Br2]1/2

  44. Tormiamo al Meccanismo delle reazioni e cerchiamo di capire come si puo’ descrivere l’andamento di una reazione in funzione dell’energia del sistema Obiettivo: capire la relazione tra aspetto cinetico ed aspetto termodinamico di una reazione

  45. Ep DH Dipendenza dell’energia potenziale dalla coordinata di reazione L’energia di attivazione si riferisce al percorso più favorevole della reazione, indicato dalla coordinata di reazione.

  46. NO2 + CO NO + CO2 Esempio

  47. Controllo cinetico delle reazioni Se non esiste un meccanismo di interconversione tra C e D con Energia di Attivazione accessibile, si può ottenere in modo quantitativo il prodotto termodinamicamente più instabile (ovvero C)

  48. Intermedi Intermedio = specie chimica capace di esistenza reale ed autonoma I due massimi corrispondono alla formazione di due complessi attivati (o stati di transizione TS), mentre il minimo tra essi corrisponde alla formazione dell’intermedio, che ha E< dei complessi attivati ma > dei reagenti e prodotti.

  49. Complesso attivato ed intermedio di reazione Complesso attivato stato intermedio che corrisponde ad una situazione di massimo di Energia potenziale. Rappresenta uno stato a cui NON puo’ essere associato una specie chimica Intermedio. Stato intermedio che corrisponde ad un minimi relativo di energia. Corrisponde ad una specie chimica capace di esistenza propria

  50. Temperatura e cinetica Un aumento di T fa sempre aumentare la velocità di reazione. Ma esistono limitazioni pratiche. Inoltre, se la reazione è esotermica l’aumento di T fa spostare l’equilibrio a sinistra.

More Related