1 / 22

Powering the Future: Biofuels

Powering the Future: Biofuels. Activity: Carbohydrate testing. Use a variety of chemical tests to identify carbohydrates in plant material Evaluate the merits of the sugar content of different biofuel feedstocks Suggest suitable crops for bioethanol production. Facts and Figures.

adamina
Télécharger la présentation

Powering the Future: Biofuels

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Powering the Future: Biofuels

  2. Activity: Carbohydrate testing • Use a variety of chemical tests to identify carbohydrates in plant material • Evaluate the merits of the sugar content of different biofuelfeedstocks • Suggest suitable crops for bioethanol production

  3. Facts and Figures • To help combat climate change the UK has a target to reduce carbon emissions by 80% by 2050. • 30% of the UK renewable energy could come from biomass heat and electricity by 2020. • To meet the European Renewable Energy Directive, the UK is aiming for 10% of transport energy to be from renewable sources by 2020. • 18% of the sustainable renewable road transport fuel used in the UK between April 2012 and April 2013 came from UK feedstocks.

  4. © Rothamsted Research Bioenergy is the energy derived from harvesting biomass such as crops, trees or agricultural waste and using it to generate heat, electricity or transport fuels.

  5. © Thinkstock® • Sugar cane: Currently sugar cane (27%) is a significant source of sugar for bioethanol • production using current methods. Sugar cane is produced on a large scale in Brazil and sugar beet is cultivated in the UK.

  6. © Rothamsted Research Optimising the yield of fast growing energy crops that are not part of the food chain is one way scientists aim to make sustainable, green bioenergy replacements for fossil fuels a reality.  

  7. © University of Cambridge Stained cross-section of plant stem: The sugars locked away in the stems of plants would make excellent fuel for sustainable bioenergy. Research will investigate how they could be unlocked for conversion into green bioenergy.

  8. © University of Dundee at SCRI • Improving barley straw for bioenergy production and transferring the new knowledge to other crops:Our challenge is to discover how the properties of lignin in barley straw can be changed, to make it easier to produce biofuel (or bioenergy) from this waste material without having any detrimental effects on the yield or quality of the crop.

  9. © John Innes Centre Improving barley straw for bioenergy production: Scientists aim to help make advanced biofuels both feasible and competitive by identifying the best barley varieties for bioenergy applications and determining how lignin content and structure influence the combustion properties of straw and the efficiency of biofuel production.

  10. © University of Dundee at SCRI Plant Cell Walls: Lignin is a strengthening and waterproofing material that encrusts the sugar based polymers in plant cell walls making them hard to access for biofuel production.

  11. © University of Cambridge Stained cross-section of plant stem: One of the main components of lignocellulose is a polymer called xylan. Xylan in wood and straw is made up of xylose sugar and represents about a third of the sugars that could potentially be used to make bioethanol, but it is locked away.

  12. © University of Cambridge Stained cross-section of plant stem: If we can understand better how the plant sugars are arranged in the cell walls, we can select plants and match them with the most appropriate enzymes for more effective biofuel production.

  13. Steam explosion unit: We need to optimise the release of sugars from agricultural and wood-industry wastes to produce a fermentable feedstock that microorganisms can use to produce fuels. Pretreatment of feedstocks with steam opens up the structures in plant cell walls to enable access by cellulase enzymes. © Institute of Food Research

  14. University of Nottingham To harness the potential of lignocellulosic (plant cell wall) materials, we need to optimise the release of sugars from agricultural and wood-industry wastes to produce a fermentable feedstock that microorganisms can use to produce fuels. Developing robust microbial strains that can use these feedstocks will enable sustainable production of bioethanol. Professor Katherine Smart BSBEC LACE Programme School of Biosciences University of Nottingham

  15. Method: Test for Starch Grind or mash some of the plant material using a pestle and mortar. Add a small amount of the plant material (about 1-2 g) to the spotting tile. Add a drop of iodine solution. A change in colour to blue/black indicates the presence of starch.

  16. Method: Test for reducing sugars Grind or mash some of the plant material using a pestle and mortar. Add a small volume of distilled water (approx. 5 ml) and continue to grind the plant material for another couple of minutes. Transfer approximately 5 g of the extract from the plant material into a boiling tube. Carry out the following steps with a positive glucose control solution in addition to the test samples. Add 10 drops or 3 ml of Benedict’s reagent using a pipette or syringe. Place the boiling tube into a beaker of warm water. Heat the beaker until the water boils and maintain the heat for 8-10 minutes. Carefully remove the boiling tube from the beaker using a test tube holder and transfer to a boiling tube rack. The presence of glucose is indicated by a change in colour from blue to green, yellow, orange and brick-red colours depending on the amount of reducing sugar present.

  17. Method: Testing glucose concentrations using Benedict’s Make up a dilution series using the 10% glucose solution and the following dilutions; 1 ml of 10% glucose + 9 ml of water = 1% 1 ml of 1% glucose + 9 ml of water = 0.1% 1 ml of 0.1% glucose + 9 ml of water = 0.01% Test each dilution by adding ten drops of Benedict’s reagent to 1 ml of the glucose solution. Place the boiling tube into a beaker of warm water. Heat the beaker until the water boils and maintain the heat for 8-10 minutes. Carefully remove the boiling tube from the beaker using a test tube holder and transfer to a boiling tube rack. The colour of the solutions from blue to green, yellow, orange and brick-red colours indicates the concentration of glucose present. Repeat steps 2-5 with the test samples and compare with the colour of the standards to determine the concentration.

  18. Method: Testing glucose concentrations using potassium permanganate Label the beakers and pipettes to avoid cross contamination of potassium permanganate, sulphuric acid and glucose. Make up a series of glucose solutions (2%, 4%, 6%, 8%, 10% and make up a 12% stock solution of glucose). 10 ml of 12% glucose + 2 ml of water = 10% 10 ml of 12% glucose + 5 ml of water = 8% 7.5 ml of 12% glucose + 7.5 ml of water = 6% 5 ml of 12% glucose + 10 ml of water = 4% 2.5 ml of 12% glucose + 12.5 ml of water = 2% Make up a fresh stock indicator solution of equal volumes of sulphuric acid and potassium permanganate. In the following order place 10 ml of the first glucose solution, 5 ml of sulphuric acid then 2 ml of potassium permanganate into the boiling tube. Start the timer. Stir with a stirring rod and stop the timer as soon as the pink colour disappears. Record the time and the glucose solution used. Rinse the pipette used for the glucose solution. Repeat using the other glucose solutions of known concentration. Plot a standard curve of glucose solution against time taken for complete colour change. Repeat for a solution of unknown concentration and record the time. Use the standard curve to estimate the concentration of the unknown solution.

  19. Method: Test for non-reducing sugars Grind or mash some of the plant material using a pestle and mortar. Add a small volume of distilled water (approx. 5 ml) and continue to grind the plant material for another couple of minutes. Transfer the extract from the plant material into a boiling tube. Carry out the following steps with a positive sucrose control solution and a negative glucose control solution in addition to the test samples. Add about 2 ml of dilute hydrochloric acid using a pipette or syringe. Place the boiling tube into a beaker of warm water. Heat the beaker until the water boils and maintain the heat for 10 minutes. Carefully remove the boiling tube from the beaker using a test tube holder and transfer to a boiling tube rack. Allow the boiling tube to cool for 5 minutes before adding 2 ml of sodium hydrogen carbonate solution or slowly adding small amounts of solid sodium hydrogen carbonate until the fizzing stops. Then follow steps 5–7 from the reducing sugar test.

  20. Activity: Carbohydrate testing • Use a variety of chemical tests to identify carbohydrates in plant material • Evaluate the merits of the sugar content of different biofuelfeedstocks • Suggest suitable crops for bioethanol production

  21. Contributors

More Related