270 likes | 376 Vues
Delve into core concepts of the Standard Model, from renormalisation to running couplings, to shed light on modern physics. This introductory course explores quarks, leptons, QCD perturbation theory, and more. Learn how renormalisationscales and charge reparameterisation play vital roles in defining couplings at different scales. Discover the intricacies of electromagnetic coupling running, finite charges, running distances, and physical interpretations in interaction processes. Gain insights into renormalisation of masses and the strong force, asymptotic freedom, and setting renormalisation scales for comprehensive understanding.
E N D
Conceptsof the Standard Model: renormalisation FK8022, Lecture 2 Core text: Quarks and leptons: an introductorycourse in modern physics, Halzen and Martin Furtherreading: Basics of QCD perturbation theory, D.E. Soper (hep-ph/9702203)
Lectureoutline • Infinitiesarising from loops • Regularisation • Reparameterisationof charge • Renormalisation • finite charge, amplitude • Renormalisationscale • Runningofcouplings
A simple QED process m m p2 p4 q e e p1 p3
Adding a higher order process m m m m + e e e e e e
Renormalisationscale [ ] - - (A) (B) (C) + higher orders
Scaledependenceofamplitude ar(Q2) emscattering Singlephotonexchange Order ofcalculation
Renormalisation Divergence in amplitude from higher order loop Make finite by redefiningcoupling/charge and removeinfinity Coupling/charge depends on an arbitrarykinematicscalemrfor a given interaction Finiteexpression for runningofcoupling/charge withmr For a complete expansion the amplitude is independent ofmr
Renormalisationworks: electromagneticcouplingrunning Tinyshift (momentum transfer)2 /GeV2 Interaction distance
Physical interpretation of the runningcoupling e- e- e- e- e+,e- + e+,e- e+,e- e- e- e- Coupling Distancescale
Renormalisationofotherquantities • Different loop diagrams cause otherphysicalquantitiesto be renormalised. • Egmass • Massesalsorun: m
Whatabout the strong force ? q q q q q q q q q,q + otherhigher order diagrams q,q q,q q q q q q q q q
Asymptotic freedom as Momentum transfer /GeV Interaction distance