1 / 14

Drei Domänen des Lebens

Drei Domänen des Lebens Unterschiede auf z ellularer und molekularer Ebene definieren drei unterschiedliche " Domänen " Three Domains of Life Differences in cellular and molecular level define three distinct domains of life.

adsila
Télécharger la présentation

Drei Domänen des Lebens

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DreiDomänen des Lebens • Unterschiede auf zellularerund molekularerEbenedefinierendreiunterschiedliche "Domänen" Three Domains of Life • Differences in cellular and molecular level define three distinct domains of life

  2. Alle Zellen brauchen Kohlenstoff  Konstruktionswerkstoff (1) Alle Zellen brauchen Energie  Aufrechterhaltung des Betriebs (2) • Unterscheidung nach Kohlenstoffquelle CO2 oder • org. Verbindungen • (2) Unterscheidung nach Energiequelle  elektromagnetische Strahlung oder energiereiche Verbindungen (1) Autotrophe  Heterotrophe (2) Phototrophe Chemotrophe Lithotrophe Organotrophe

  3. Heterotrophe Benutzen organische Nährstoffe aus organischen Kohlenstoffquellen. Chemo-heterotrophe Chemo-litho-heterotrophe Energiequelle: anorganische Oxidation Photo-Heterotrophe Energiequelle: Licht purple non-sulfur bacteria, green non-sulfur bacteria and heliobacteria Nitrobacter spp., Wolinella (with H2 as reducing equivalent donor), some Knallgas-bacteria Chemo-heterotrophe Chemo-organo-heterotrophe Energiequelle: organische Oxidation (Kohlenstoffverbindungen)

  4. Autotrophe Bauen organische Nährstoffe aus anorganischen Kohlenstoffquellen auf. Kohlenstoffquelle: CO2(Atmosphäre, Wasser) Photo-Autotrophe Energiequelle: Licht Photosynthese zum Aufbau der Nährstoffe • Chemo-autotrophe • nur: Litho-autotrophe • Energiequelle: • anorganische Oxidation • „Brennstoffe“: CH4,NH3, NH4+, H2S, Fe2+, SO32- , NO2-, … • (alle oxidierbare Anorganik) Cyanobakterien grüne Algen grüne Pflanzen die meisten Bacteria und Archaea

  5. LebendeSystemebeziehenEnergie • Aus demSonnenlicht • Planzen • GrüneBakterien • Cyanobakterien • Aus Brennstoffen • Tiere • Die meistenBakterien • Die Energieaufnahmeistnotwendigfür den ErhaltderkomplexenStrukturen und des dynamischenGleichgewichts (steady state, stationärerZustand), weitentferntvomthermodynamischenGleichgewichtszustand. Living Systems Extract Energy • From sunlight • plants • green bacteria • cyanobacteria • From fuels • animals • most bacteria • Energy input is needed in order to maintain complex structures and be in a dynamic steady state, away from the equilibrium

  6. In chemistry, a steady state is a situation in which all state variables are constant in spite of ongoing processes that strive to change them. For an entire system to be at steady state, i.e. for all state variables of a system to be constant, there must be a flow through the system (compare mass balance). One of the most simple examples of such a system is the case of a bathtub with the tap open but without the bottom plug: after a certain time the water flows in and out at the same rate, so the water level (the state variable being Volume) stabilizes and the system is at steady state. The steady state concept is different from chemical equilibrium. Although both may create a situation where a concentration does not change, in a system at chemical equilibrium, the net reaction rate is zero (products transform into reactants at the same rate as reactants transform into products), while no such limitation exists in the steady state concept. Indeed, there does not have to be a reaction at all for a steady state to develop.

  7. In chemistry, a steady state is a situation in which all state variables are constant in spite of ongoing processes that strive to change them. For an entire system to be at steady state, i.e. for all state variables of a system to be constant, there must be a flow through the system (compare mass balance). One of the most simple examples of such a system is the case of a bathtub with the tap open but without the bottom plug: after a certain time the water flows in and out at the same rate, so the water level (the state variable being Volume) stabilizes and the system is at steady state. The steady state concept is different from chemical equilibrium. Although both may create a situation where a concentration does not change, in a system at chemical equilibrium, the net reaction rate is zero (products transform into reactants at the same rate as reactants transform into products), while no such limitation exists in the steady state concept. Indeed, there does not have to be a reaction at all for a steady state to develop.

  8. Solarenergie als die ultimative Quelle aller biologischer Energie Kooperation phototropher und heterotropher Zellen

  9. 1 EJ (Exa) = 1018 J

More Related