1 / 25

Charge collection measurement on slim edge sensors with the ALiBaVa system

Charge collection measurement on slim edge sensors with the ALiBaVa system. Riccardo Mori*, Matteo Cartiglia, Hartmut Sadrozinski**, Mara Bruzzi*, Vitaliy Fadeyev**, *Dipartimento di Energetica, Università degli Studi di Firenze Istituto Nazionale di Fisica Nucleare, sezione di Firenze

aileen
Télécharger la présentation

Charge collection measurement on slim edge sensors with the ALiBaVa system

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Charge collection measurement on slim edge sensors with the ALiBaVa system Riccardo Mori*, Matteo Cartiglia, Hartmut Sadrozinski**, Mara Bruzzi*, Vitaliy Fadeyev**, *Dipartimento di Energetica, Università degli Studi di Firenze Istituto Nazionale di Fisica Nucleare, sezione di Firenze ** Santa Cruz Institute of Particle Physics, University of California Santa Cruz

  2. Introduction • ALiBaVa[1] is a portable read-out system developed for test sensors in (s)LHC-like experiments. It provides a real-time GUI and data format for custom (ROOT) analysis. • There is the interest on the SNR and the efficiency of detectors. In particular it is interesting to know the performances of slim edges (cut) detectors, compared to the uncut ones. • It is interesting to study the relation between the occupancy and the efficiency of a detector by a threshold scan: • To vary the threshold mean to scale the occupancy by a factor proportional to the integral of the distribution[2]. • Our objectives are to study the signal distributions and to characterize slim edge sensors: • comparing cut and uncut detectors; • comparing inner strips with edge-strips (outer strips). [1]Marco-Hernandez, IEEE TNS, 2009; [2] Spieler, Introduction to radiation detectors and electronics, 1998, ch. VIII.6. R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  3. Materials • Sensors: • (CMS, p-on-n, unirradiated, 128 strips.) • GLAST cut (Si oxide passivated, laser-scribed and cleaved), p-on-n, unirradiated, 8 strips. (Thanks to Bernard Phlips and Marc Christophersen!) • GLAST uncut, p-on-n, unirradiated, 8 strips. 96 um 345 um R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  4. Experimental set-up • Set-up: • 90Sr/90Y (disintegration energies 0.5/2.3 MeV, half-life 29y/64h). • Scintillator + photomultiplier (PM) tube from UCSC. • ALiBaVa system from INFN Florence. • Settlings: • Vbias=[1,10,20,50,100,150,200,500] V. • Beetle settlings: high gain, “Kazu” configuration. • Noise measurements: detector not in front of the source. R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  5. Analysis # • Noise measurement analysis: • Fit of the distribution to get the sigma. • Occupancy threshold scan and fits to cross-check. • Signal measurements analysis: • Time cut. • Clustering: amplitude cut for seed and neighbours. • Fit of the distribution to get the MPV and a sigma of noise. => SNR=MPV/sigma (from noise distribution fit). • Analysis vs. bias voltage. • Analysis vs. channel index: look at the edges! ADC # ADC R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  6. Experimental results • GLAST cut (inner channels): • Noise: distribution Vbias=200V • Sigma=4.46 ADCs R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  7. Experimental results • GLAST cut (inner channels): • Noise: occupancy threshold scan. • Sigma=6.34 ADCs R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  8. Experimental results Without performing the time cut • GLAST cut (inner channels): • Signal: in time and distributions Vbias=200V • Time cut: [25,45]ns • Correction factor: 1.013. • MPV=103.62*1.013 ADCs (from the CMS, expected 107.33!). • Sigma(Gaussian)=18.62 ADCs. SNR=103.26*1.013/4.46=23.64 R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  9. Experimental results • GLAST cut (inner channels): • Results versus bias voltage sigma versus bias voltage R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  10. Experimental results • Comparison inner-outer channels: the anomaly of the outer channels Noise distributions Signal distributions Outer noise larger because of the interstrip capacitance. Outer signals have a tail!?! R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  11. Experimental results • Comparison inner-outer channels: the anomaly of the outer channels An inner channel without adding the neighbours... The highest neighbours distribution: the tail!!! Adding the neighbours... The outer channels has the guard ring as neighbors, which is not read out. R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  12. Experimental results • Comparison inner-outer channels: reconstructing the outer channels R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  13. Experimental results • Comparison cut-uncut: • Noise: Vbias=150V Inner noise About the same sigma! R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  14. Experimental results • Comparison cut-uncut: • Signal: (cut side) About the same pulse height! R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  15. Discussion • Limits: • No calibration. • No separated pedestal run. • On the results: • Width of the distribution: • Noise. • Dispersion of the path length. • Natural broadening of the Landau described by Meroli[4]. • MPV decrease from 200V to 500V. • The border strips clearly have a tail due to the charge sharing with the bias ring, in general due to the contribution as a neighbours of channels unread-out. [4]Meroli, http://meroli.web.cern.ch/meroli/Lectures_StragglingFunction.html R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  16. Conclusions • Work done: • Tested ALiBaVa. • Tested detectors: SNR, efficiency. • Compared cut-uncut. • Results: • The cut sensor is as good as the uncut one: about the same sigma and the same pulse height. • Future works: • Calibration. • Test of other sensors (GLAST wonder baby, p-type). Acknowledgements • In particular, to Nicola Pacifico. R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  17. Spares • I-V cut sensor. • CMS sensor results. • GLAST uncut sensor results. • Results vs. channel index. • Dispersion of the path length. • Warnings: “Teppo's effect”. • Set-up. R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  18. Spares • I-V of sensors: R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  19. Spares • I-V of individual channels: R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  20. Spares • CMS sensor results: • sigma=3.3 ADCs • SNR≈25 R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  21. Spares • GLAST uncut sensor results: R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  22. Spares • Results vs. channel index (all channels): Uncut sensor Vbias=150V Cut sensor Vbias=150V R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  23. L min L MAX Spares • Dispersion of the path length: L min=400um L MAX=460.42um Assuming: MPV(L min)=100 ADCs =>MPV(L MAX)=115.10 ADCs => Dispersion of 15.1 ADCs =>ENOUGH TO EXPLAIN! R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  24. Spares • Warnings: • “Teppo's effect”[3]: • Be careful on the settling of the threshold: with a too high threshold, a Landau still appear and the MPV is biased (higher respect to the real). Normal cut Cutting more MPV=89.80 ADCs MPV=92.28 ADCs [3] Maenpaa, Ph.D thesis, 2011. R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

  25. Spares • Set-up: sensor PM tube Sr Scint. Daughter board PS PS Mother board PC (ROOT) R. Mori, M. Cartiglia, H. Sadrozinski, M. Bruzzi, V. Fadeyev, B. Phlips, M. Christophersen RD50, 21-23 November 2011, CERN

More Related