Download
area centroid moment of inertia radius of gyration n.
Skip this Video
Loading SlideShow in 5 Seconds..
Area, Centroid, Moment of Inertia, Radius of Gyration PowerPoint Presentation
Download Presentation
Area, Centroid, Moment of Inertia, Radius of Gyration

Area, Centroid, Moment of Inertia, Radius of Gyration

640 Vues Download Presentation
Télécharger la présentation

Area, Centroid, Moment of Inertia, Radius of Gyration

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Area, Centroid, Moment of Inertia, Radius of Gyration Dr. Mohammed E. Haque, P.E. Professor Department of Construction science COSC321Haque (PPT_C7)

  2. y A = b h Ix = b h3 /12 Iy = h b3 /12 x h b Area, Moment of Inertia Centroid COSC321Haque (PPT_C7)

  3. Area, Moment of Inertia y A = 0.5 b h Ix = b h3 /36 Iy = h b3 /36 h x Centroid h/3 b/3 b COSC321Haque (PPT_C7)

  4. Area, Moment of Inertia Y Centroid X R A = π R2 Ix = Iy = π R4 /64 COSC321Haque (PPT_C7)

  5. Radius of Gyration rx =(Ix /A) ry =(Iy /A) COSC321Haque (PPT_C7)

  6. Centroid b/2 A = b h h/2 h Ixc = b h3 /12 dy Ix-x = Ixc + A dy2 = b h3 /12 + b h dy2 b x x Moment of Inertia about an axis parallel to centroidal axis COSC321Haque (PPT_C7)

  7. 20’-0” Y 4’-0” 4’-0” 10’-0” 4’-0” 7’-0” 3’-0” X 3’-0” 14’-0” 3’-0” Area and Centroid Q1: A pre-cast concrete wall panel as shown in fig. Determine (a) Wall Area (b) Centroid (x and y axes referenced from the lower left corner). COSC321Haque (PPT_C7)

  8. A = 163 Sqft X = 1713.5 /163 = 10.512 ft Y = 846.5 /163 = 5.193 ft COSC321Haque (PPT_C7)

  9. y 2” X Y 3” 5” 3” 2” x y 2” 1 5” 3” 3” 2” 2 x Q2: Determine (a) Area (b) Centroid (c ) Moment of Inertia about x and y axes COSC321Haque (PPT_C7)

  10. X = 104 /26 = 4 in Y = 61 /26 = 2.346 in (a) Area; (b) Centroid • AREA, A = 26 Sqin. • (b) COSC321Haque (PPT_C7)

  11. (c ) Moment of Inertia about the centroidal axes Ixcg = 26.167 + 75.384 = 101.55 in4 Iycg = 88.667 + 0 = 88.667 in4 COSC321Haque (PPT_C7)

  12. Y 1” X 4” 1” 2” 2” 2” • Q3: Determine • Area • Moment of Inertia, Ixc, Iyc • Radius of Gyration, rx, ry COSC321Haque (PPT_C7)

  13. 1 3 Y 2 1” X 4” 1” 2” 2” 2” A= 20 in2 Ix = 11.667 + 75.0 = 86.667 in4 Iy = 38.667 + 0 = 38.667 in4 rx = (86.667/20) = 2.08 in ry = (38.667/20) = 1.39 in COSC321Haque (PPT_C7)

  14. Y 1 1” X 4” 2 1” 2” 2” 2” • Q4: Determine • Area • Moment of Inertia, Ixc, Iyc • Radius of Gyration, rx, ry COSC321Haque (PPT_C7)

  15. Y 1 1” X 4” 2 1” 2” 2” 2” A= 28 in2 Ix = 97.333 in4 Iy = 105.333 in4 rx = (97.333/28) = 1.86 in ry = (105.333/28) = 1.94 in COSC321Haque (PPT_C7)

  16. Y 4” 1” X Y 2” 4” 1 4” 2 1” X 2” 4” • Q5: Determine • Area • Centroid • Moment of Inertia, Ixc, Iyc • Radius of Gyration, rx, ry COSC321Haque (PPT_C7)

  17. X = 26 /14 = 1.86 in Y = 27 /14 = 1.93 in (a) Area; (b) Centroid • AREA, A = 14 Sqin. • (b) COSC321Haque (PPT_C7)

  18. (c ) Moment of Inertia; (d) Radius of gyration Ix = 11.167 + 46.54 = 57.71 in4 Iy = 20.667 + 13.72 = 34.39 in4 rx = (57.71/14) = 2.03 in ry = (34.39/14) = 1.57 in COSC321Haque (PPT_C7)