1 / 50

History of IGM

History of IGM. Epoch of Reionization (EoR). bench-mark in cosmic structure formation indicating the first luminous structures. z=5.80. z=5.82. z=5.99. z=6.28. The Gunn Peterson Effect. Fast reionization at z =6.3 => opaque at l _obs <0.9 m m. f(HI) > 0.001 at z = 6.3.

aldis
Télécharger la présentation

History of IGM

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. History of IGM Epoch of Reionization (EoR) • bench-mark in cosmic structure formation indicating the first luminous structures

  2. z=5.80 z=5.82 z=5.99 z=6.28 The Gunn Peterson Effect Fast reionization at z=6.3 => opaque at l_obs<0.9mm f(HI) > 0.001 at z = 6.3 Fan et al 2003

  3. Neutral IGM evolution (Gnedin 2000): ‘Cosmic Phase transition’ HI fraction Ionizing intensity Density Gas Temp 8 Mpc (comoving) Normalization: GP absorption, LCDM + z=4 LBGs, T_IGM

  4. WMAP Large scale polarization of CMB (Kogut et al.) • Large scale structure (10’s deg) = Thompson scattering at EoR • t_e =Ln_es_e = 0.17 => F(HI) < 0.5 at z=20 GP + WMAP => Reionization Process is complex, extending from z~20-6? (200-800 Million years after Big Bang)

  5. Near-edge of reionization: GP Effect Fan et al. 2002 Fairly Fast: • f(HI) > 1e-3 at z >= 6.4 (0.87Gyr) • f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr) • Problem: t_Lya >> 1 for f(HI) > 0.001

  6. Complex reionization example: Double reionization? (Cen 2002) Pop III stars in ‘mini-halos’ (<1e7 M_sun) ‘normal’ galaxies (>1e8M_sun)

  7. Radio astronomical probes of the Epoch of Reionization and the 1st luminous objects Objects within EoR – Molecular gas, dust, star formation Neutral IGM – HI 21cm emission and absorption Collaborators USA – Carilli, Walter, Fan, Strauss, Owen, Gnedin, Djorgovski Euro – Bertoldi, Menten, Cox, Omont, Beelen SKA ‘level 0’ science team – Briggs, Carilli, Furlanetto, Gnedin

  8. MAMBO + IRAM 30m Max-Planck Bolometer array: 133 pixel bolometer camera at 300mK, single mode horns (Kreysa) Wide fieldimaging and photometry at 250 GHz rms < 0.5 mJy, res=10.6”, field sizes >= 30’

  9. Very Large Array 1. Wide-field imaging at 1.4 GHz: rms=7uJy, 1” res, FoV=30’ Astrometry => avoid confusion Imaging => AGN vs. Starburst, Lensing? cm-to-mm SEDs => redshifts, star formation rates unhindered by dust 2. Low order CO transitionsat 20 to 50 GHz: rms < 0.1 mJy, res << 1” Gas excitation and mass estimates Gas distribution and dynamics, Lensing?

  10. Plateau de Bure Interferometer Imaging high order CO lines at 90 to 230 GHz: rms < 0.5 mJy, res < 1” (15% of collecting area of ALMA)

  11. Magic of (sub)mm 350 GHz 250 GHz L_FIR = 4e12 x S_250(mJy) L_sun for z=0.5 to 8 SFR = 1400 x S_250 M_sun/yr M_dust = 1.4e8 x S_250 M_sun

  12. High redshift QSOs SDSS + DPOSS: 700 at z > 4 30 at z > 5 7 at z > 6 M_B < -26 => L_bol > 1e14 L_sun M_BH > 1e9 M_sun Hunt 2001

  13. QSO host galaxies – M_BH – s relation • Most (all?) low z spheroidal galaxies have SMBH • M_BH = 0.002 M_bulge • ‘Causal connection between SMBH and spheroidal galaxy formation’ (Gebhardt et al. 2002)? • Luminous high z QSOs have massive host galaxies (1e12 M_sun)

  14. MAMBO surveys of z>2 DPSS+SDSS QSOs 1148+52 z=6.4 1e13L_sun 1048+46 z=6.2 Arp220 • 30% of luminous QSOs have S_250 > 2 mJy, independent of redshift from z=1.5 to 6.4 • L_FIR =1e13 L_sun = 0.1 x L_bol: Dust heating by starburst or AGN?

  15. L_FIR vs L’(CO) Index=1 1e11 M_sun Index=1.7 • M(H_2) = X * L’(CO), X=4 (Milkyway), X=0.8 (ULIRGs) • Telescope time: t(dust) = 1hr, t(CO) = 10hr

  16. Objects within EoR: QSO 1148+52 at z=6.4 • highest redshift quasar known • L_bol = 1e14 L_sun • central black hole: 1-5 x 109 Msun(Willotetal.) • clear Gunn Peterson trough (Fan etal.)

  17. 1148+52 z=6.42: MAMBO detection S_250 = 5.0 +/- 0.6 mJy => L_FIR = 1.2e13 L_sun, M_dust =7e8 M_sun 3’ +

  18. VLA Detection of Molecular Gas at z=6.419 50 MHz ‘channels’ (320 kms-1, Dz=0.008) noise: ~57 mJy, D array, 1.5” beam 46.6149 GHz CO 3-2 Off channels • M(H_2) = 2e10 M_sun • Size < 1.5” (image), • Size > 0.2” (T_B/50K)^-1/2

  19. IRAM Plateau de Bure confirmation n2 (6-5) (7-6) (3-2) • FWHM = 305 km/s • z = 6.419 +/- 0.001 • Tkin=100K, nH2=105cm-3

  20. VLA imaging of CO3-2 at 0.5” and 0.15” resolution rms=50uJy at 47GHz • Separation = 0.3” = 1.7 kpc • T_B = 20K = T_B (starburst) • Merging galaxies? • Or Dissociation by QSO? • CO extended to NW by 1” (=5.5 kpc) tidal(?) feature • T_B = 3 K = Milky way

  21. Phase stability: Fast switching at the VLA 10km baseline rms = 10deg

  22. 1148+52: starburst+AGN? S_1.4= 55 +/- 12 uJy IRAS 2Jy sample (Yun+) 1048+46 1148+52 • SFR(>5 M_sun) = 1400 M_sun/year => host spheroid formation in 5e7 yrs at z > 6? • SMBH formation: n x 2.4e7 yr (Loeb, Wyithe,…) => Coeval formation of galaxy/SMBH at z>6?

  23. 1148+52: Masses • M(dust) = 7e8 M_sun • M(H_2) = 2e10 M_sun • M_dyn (r=2kpc) = 4e10 (sin i)-2 M_sun • M_BH = 3e9 M_sun M_BH–s => M_bulge = 1.5e12 M_sun • Gas/dust = 30, typical of starburst • Dynamical vs. gas mass => baryon dominated? • Dynamical vs. ‘bulge’ mass => M – s breaks-down at high z? Or face-on (i < 9deg)?

  24. Cosmic (proper) time 1/16 T_univ

  25. 1148+52: Timescales • Age of universe: 8.7e8 yr • C, O production (3e7 M_sun): 1e8 yr • Fe production (SNe Ia): few e8 yr (Maiolino, Freudling) • Dust formation: 1.4e9yr (AGB winds) => dust formed in high mass stars/SNR (Dunne et al.. 2003)? => silicate grains? => Star formation started early (z > 10)?

  26. Cosmic Stromgren Sphere • Accurate redshiftfrom CO: z=6.419 optical high ionization lines can be off by 1000s km s-1 • Proximity effect:photons leaking from 6.32<z<6.419 z=6.32 White et al. 2003 • Ionized sphere around QSO: R = 4.7 Mpc ‘time bounded’ Stromgren sphere: t_qso= 1e5 R^3 f(HI)= 1e7yrs

  27. Loeb & Rybicki 2000

  28. Constraints on neutral fraction at z=6.4 • GP => f(HI) > 0.001 • If f(HI) = 0.001, then t_qso = 1e4 yrs – implausibly short? (see also J1030+0524 z=6.28, J1048+46 z=6.23 using MgII lines) • Probability arguments suggest: f(HI) > 0.1 at z=6.4 – much better limit than GP Wyithe and Loeb 2003 f_lt = 1e7 yr

  29. Gravitational Lensing? • CO 3-2 double source, 0.3” separation => strong lensing? • Keck near IR imaging: point source < 0.5” at K (Djorgovski) • HST/ACS imaging: point source < 0.3” (Richards 2004) • Radio continuum: Foreground cluster (30x over-density) at z=0.05 => magnification by 2x? 1148+5251

  30. Near-edge of reionization: GP + Strom. Spheres Fan et al. 2002 Very Fast? • f(HI) > 1e-1 at z >= 6.4 (0.87Gyr) • f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr)

  31. Gas and dust in the first galaxies • Luminous (star forming?) galaxy: Far IR luminosity = 1e13 Lsun at z=6.42 • Merging(?) galaxy: Molecular gas mass = 2x1010 M_sun, M_dyn = 4e10 (sin i)-2 M_sun • Early enrichment of heavy elements and dust produced in the first stars => star formation commenced at 0.4 Gyr after the big bang • Coeval formation of SMBH + stars in earliest galaxies (break-down of M-s at high z?) • Cosmic Stromgren sphere of 4.7 Mpc => ‘witnessing process of reionization’ t_qso = 1e7 * f(HI) yrs ‘fast’ reionization: f(HI)>0.1 at z=6.4?

  32. J1048+4637: A second FIR-luminous QSO source at z=6.2 3.0 +/- 0.4 mJy => L_FIR = 7.5e12 L_sun M_dust = 4e8 M_sun

  33. Cloverleaf z=2.56, Grav. Lens mag. 11x VLA detection of HCN emission at 22 GHz => n(H_2) > 1e5 cm^-3 (vs. CO n(H_2) > 1e4 cm^-3) (Solomon, vd Bout, Carilli)

  34. Sensitivity of future arrays: Arp 220 vs z (FIR = 1e12 L_sun) ALMA 1hr EVLA 100hr

  35. Redshifts for obscured/faint sources: wide band (16 - 32 GHz) spectrometers on LMT/GBT (Min Yun 2004) L_FIR = 1e13 L_sun

  36. Z=10 lensed star forming galaxy? (Pello 2004) L_app= 4e11 L_sun + LBG dust correction (5x) => L_FIR = 2e12L_sun S_250 = 0.6 mJy => 5s ALMA detection in 1 minute! S (CO 4-3 at 42 GHz) = 0.06 mJy => 5s EVLA detection in 15hr

  37. Studying the pristine IGM beyond the EOR: HI 21cm observations with the Square Kilometer Array and LOFAR SKA: A/T = 20000 m^2/K => mJy at 200 MHz

  38. Low frequency background – hot, confused sky Eberg 408 MHz Image (Haslam + 1982) Coldest regions: T = 200 (n/200 MHz)^2.6 K

  39. Global HI signature in low frequency spectra (Gnedin & Shaver 2003) 21cm ‘fluctuations’ at 1e-4 wrt foreground fast double

  40. HI 21cm Tomography of IGM Zaldarriaga + 2003 z=12 9 7.6 • DT_B(2’) = 10’s mK • SKA rms(100hr) = 4mK • LOFAR rms (1000hr) = 80mK

  41. Power spectrum analysis Zaldarriaga + 2003 Z=10 129 MHz PAST LOFAR SKA 2deg 1arcmin

  42. Cosmic Webafter reionization = Ly alpha forest (d <= 10) 1422+23 z=3.62 Womble 1996 N(HI) = 1e13 -- 1e15 cm^-2, f(HI/HII) = 1e-5 -- 1e-6 => Before reionization N(HI) =1e18 – 1e21 cm^-2

  43. Cosmic web before reionization: HI 21cm Forest (Carilli, Gnedin, Owen 2002) 20mJy Z=10 • SKA ‘observations’ of 21cm absorption before the EOR (A/T = 2000 m^2/K, 240hrs, 1kHz) • Mean optical depth (z = 10) = 1% = ‘Radio Gunn-Peterson effect’ • Narrow lines (t= few %, few km/s) = HI 21cm forest (d <= 10), 10/unit z at z=8 • Mini-halos (d >= 100) (Furlatto & Loeb 2003) • Primordial disks: low cosmic density (0.001/unit z), but high opacity => fainter radio sources (GRBs?) Z=8

  44. Radio sources beyond the EOR? • Radio loud QSO fraction = 10% to z=5.8 (Petric + 2003) • Models => expect 0.05 to 0.5 deg^-2 at z> 6 with S_151 > 6 mJy (out of 100 total) Haiman & Hui 2004 1.4e5 at z > 6 S_151 > 6mJy 2240 at z > 6 Carilli + 2002

  45. Terrestrial interference 100 MHz 200 MHz GMRT 230 MHz 0924-220 z=5.2

  46. GMRT 230 MHz 0924-220 z=5.2 • Continuum point source = 0.55 Jy • Noise limited spectra: s=5.5 mJy/channel • HI 21cm absorption at z=5.200? t = 4%, Dv = 130 km/s N(HI) = 9e20 (Ts/100K) cm^-2

  47. SKA timeline • 2004 Science case: “Science with the SKA” Carilli & Rawlings, New Astron. Rev. • 2004-7 demonstrator development major external review (2006) submit funding proposals for a 5% demonstrator • 2006 site selection: Autralia, USA-SW, South Africa, China • 2008 selection of technical design (may be a combination); start construction of 5% demonstrator on chosen site • 2009 submit funding proposals for full array • 2012 start construction • 2020 complete construction Projected cost: 1 G$

  48. Radio astronomy – Probing the EoR • Study physics of the first luminous sources (limited to near-IR to radio wavelengths) • Currently limited to pathological systems (‘HLIRGs’) • EVLA and ALMA 10-100x sensitivity is critical for study of ‘normal’ galaxies • SKA is the only means to study the neutral IGM z=6.4

  49. Ultimate goal: Far side of the moon? • No RFI • No ionosphere • Cheap, ‘dirty’ antennas • No moving parts 130MHz

More Related