1 / 37

“Exotic” hadron-hadron S-wave Interaction

“Exotic” hadron-hadron S-wave Interaction. Bing-song Zou IHEP, Beijing. Outline “Exotic” pp S-wave Interaction Why interested ? How “exotic” ? Similarity between pp, pK and p N s-wave scattering What’s the nature of the broad s ?

ariane
Télécharger la présentation

“Exotic” hadron-hadron S-wave Interaction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. “Exotic” hadron-hadron S-wave Interaction Bing-song Zou IHEP, Beijing

  2. Outline • “Exotic” pp S-wave Interaction • Why interested ? How “exotic” ? • Similarity between pp, pK and pN s-wave scatteringWhat’s the nature of the broad s ? • Why it appears narrower in production processes ? • Why f0(980)’s peak width is so narrow ? • 2. I=0 1S0`pp & I=1 1S0pp near threshold enhancement • 3. KL S-wave near threshold enhancement • in J/y p K-`L vs p p p K+ L

  3. “Exotic” pp S-wave Interaction • Why interested ? • 1) a fundamental strong interaction process and • a necessary input for many reactions involving • multi-pions • 2) I=0 pp S-wave has the same quantum number • of f0 resonances which include : • s/f0(600) (s-model, s-exchange for NN interaction) • and the lightest glueball candidate f0(1500)/f0(1710) p f0 p p p

  4. How “Exotic” ? p p p p p p

  5. CERN-Munich data: B.Hyams et al., Nucl. Phys. B64 (1973) 134.

  6. Exotic I=0 S-wave I=1 P-wave r(770) I=1 F-wave I=0 D-wave f2(1270) r3(1690) D.V.Bugg, A.Sarantsev,B.S.Zou, Nucl. Phys. B471 (1996) 59

  7. pp phase shifts d

  8. pp inelasticity h

  9. “Exotic” pp S-wave interaction : broad s-background with narrow resonances as dips instead of peaks

  10. Similarity for pp, pK and pN s-wave scattering pp (I=0) pK (I=1/2) pN(I=1/2) p+ p p+p+ p+K+

  11. What’s the nature of the broad s ? Important role by t-channel r exchange for all these processes p p r p p pp pK & pN KrI=0 = - 2 KrI=2 , KrI=1/2 = - 2 KrI=3/2 D. Lohse, J.W. Durso, K. Holinde, J. Speth, Nucl.Phys.A516, 513 (1990) B.S.Zou, D.V.Bugg, Phys. Rev. D50, 591 (1994)

  12. Basic features of I=2 pp Interaction F.Q.Wu, B.S.Zou et al., Nucl. Phys.A735 (2004) 111 attractive force by t-channel f2 repulsive force by t-channel r S-wave Inelasticity by pp rr

  13. An important cause for hadron-hadron S-wave interactions appearing “exotic” is t-channel meson-exchange amplitude has a comparable strength as s-channel resonance contribution for S-waves. For higher partial waves, s-channel resonance contribution dominates.

  14. Why broad s appears narrower in production processes than in pp elastic scattering? Tel= K / ( 1 - i r K ) = K + K i r K + K i r K i r K + … Tprod= P / ( 1 - i r K ) = P + P i r K + P i r K i r K + …

  15. Tel from Bugg,Sarantsev,Zou Nucl. Phys. B471 (1996) 59 with s pole at ( 0.571 – i 0.420 ) GeV Tprod= Tel *P/ K , K = tan d / r el prod assuming P=1

  16. How about production vertex P ? • P(V’Vp+p-) • T. Mannel, R. Urech, Z. Phys.C73, 541 (1997); • Ulf-G. Meißner, J.Oller, Nucl.Phys. A679 (2001) 671; • L. Roca, J. Palomar, E. Oset, H.C.Chiang, Nucl. Phys. A744 (2004) 127 • F.K.Guo,P.N.Shen, H.C.Chiang, R.G.Ping, Nucl.Phys.A761 (2005) 269 • For y’J/y p+p- , Ep small, 1st term dominates •  higher s peak • For y w p+p- , Ep large, 2nd term dominates •  lower s peak • peak position is process dependent ! P ~ c1 + c2 s

  17. BES, Phys.Rev. D62 (2000) 032002 y’J/y p+p- BES, Phys.Lett. B598 (2004) 149

  18. Why f0(980)’s peak width is so narrow ? BES, hep-ex/0411001 M = 965 MeV g1 = 165 MeV2 r = g2/g1 = 4.21 r = 4.21 Strong coupling to`KK strongly reduce the peak width of f0(980) r = 0

  19. B.S.Zou, hep-ph/9611235, “pp S-wave interaction and 0++ particles” 0++ particles with substantial couplings to pp : s/f0(600), f0(980), f0(1500), f0(1780-1800)

  20. BES II Preliminary f0(1790) ? BES collaboration, hep-ex/0411001

  21. 2. I=0 1S0`pp & I=1 1S0pp near threshold enhancement p p  p p h J/ → `pp |M|2 BES Both arbitrary normalization BES, Phys. Rev. Lett. 91, 022001 (2003) COSY-TOF, Eur.Phys.J.A16, 127 (2003)

  22. One-Pion-Exchange and BES pp (1S0) near threshold enhancement Zou B.S., Chiang H.C. Phys.Rev.D69 (2004) 034004 NN interaction : { 9 (S , I ) = (0,0) 1 (S , I ) = (1,1) -3 (S , I ) = (1,0) or (0,1) deuteron `NN interaction : I=0, `pp (1S0) gets the biggest attractive force !

  23. One p exchange FSI & p + s exchange FSI

  24. p+s+r+w exchange FSI & full FSI by A.Sibirtsev et al. hep-ph/0411386

  25. I=1 s-wave P-wave I=0 s-wave A.Sibirtsev, J. Haidenbauer, S. Krewald, Ulf-G. Meißner, A.W. Thomas,hep-ph/0411386

  26. Near threshold enhancement for I=0`NN annihilation (I=0) + (I=1) Pure I = 1 E. Klempt, F. Bradamante, A. Martin, J. Richard, Phys. Rept. 368 (2002) 119

  27. 0-+ resonances decaying to meson channels PWA Results on J/y to 4p J/y -> g h p p 0- + 0- + BES, Phys. Lett. B446 (1999) 356 BES, Phys. Lett. B472 (2000) 207

  28. In summary,`pp near threshold enhancement is very likely due to some broad sub-threshold 0-+ resonance(s) plus FSI.

  29. 3. KL s-wave near threshold enhancement • complimentary BES and COSY experiments • J/y P K-`L vs P P P K+ L P`L &P L the samet-channel interaction K-`L & K+L the same interaction • P K- for L* P K+ for pentaquarks

  30. Near-threshold enhancement inMK Nx Nx Events/10MeV (Arbitrary normalization) PS, eff. corrected Nx

  31. BES Collaboration, Phys. Lett. B510 (2001) 75

  32. B.C.Liu and B.S.Zou, Phys. Rev. Lett. 96 (2006) 042002 From relative branching ratios of J/y p`N*  p (K-`L) / p (`ph) gN*KL /gN*ph /gN*pp ~ 1.3 : 1 : 0.6 Smaller N*(1535) BW mass previous results 0 ~ 2.6 from pN and gN data

  33. P P P K+ L withgN*KL /gN*ph = 1.3 with N*(1535) without N*(1535) K.Tsushima, A.Sibirtsev, A.Thomas, Phys.Rev.C59 (1999) 369

  34. Mass of N*(1535) (1) (2) (3)

  35. A.Zhang, Y. Liu, P. Huang, W. Deng, X.Chen, S.L. Zhu, hep-ph/0403210 : 1/2- and 1/2+ octet N* pentaquarks have similar masses in Jaffe-Wilczek diquark model `q ½ - [ud] [us] u `q ½+ [ud] [ud] u S d `q `q }L=0 }L=1 u d u d N*(1535) ~ uud (L=1) + e [ud][us]`s + … N*(1440) ~ uud (n=1) + x [ud][ud]`d + … L*(1405) ~ uds (L=1) + e [ud][su]`u + … Larger [ud][us]`s component in N*(1535) makes it coupling stronger to Nh & KL, weaker to Np & KS, and heavier ! B.C.Liu, B.S.Zou, PRL 96(2006)042002

  36. Summary for our study on J/y P K-`L and P P P K+ L 1) KL near-threshold enhancement due to N*(1535) with gN*KL /gN*ph = 1.0 ~ 1.6 compatible with all KL data 2) Larger [ud][us]`s component in N*(1535) makes it coupling stronger to strangeness and heavier !

  37. Thank You!

More Related