1 / 56

PushDown Automata

PushDown Automata. What is a stack?. A stack is a Last In First Out data structure where I only have access to the last element inserted in the stack. In order to access other elements I have to remove those that are on top one by one. Stack. Stack. Stack. Stack. Stack. Stack. Stack.

arleen
Télécharger la présentation

PushDown Automata

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PushDown Automata

  2. What is a stack? • A stack is a Last In First Out data structure where I only have access to the last element inserted in the stack. • In order to access other elements I have to remove those that are on top one by one.

  3. Stack

  4. Stack

  5. Stack

  6. Stack

  7. Stack

  8. Stack

  9. Stack

  10. Stack

  11. What is a PDA? • A PDA is en enhanced finite automaton that also contains an infinite stack. • The transitions in a PDA are of the form a, x ⟶ y meaning that if you see an a in the input string and the stack contains the symbol x on top then you remove the x and add a y. • The stack gives us extra power to recognize non-regular languages.

  12. Transitions • Transitions of the form a, x ⟶ y require that the next input symbol should be a and the top stack symbol should be x. a, x⟶ y a, x⟶ y q’ q q’ q x w y w ...abb... ...abb... Stack Input Stack Input

  13. Transitions • Transitions of the form ε, x ⟶ y require that the top stack symbol is x. ε, x⟶ y ε, x⟶ y q’ q q’ q x w y w ...abb... ...abb... Stack Input Stack Input

  14. Transitions • Transitions of the form a, ε⟶ y require that the next input symbol is a. a, ε ⟶ y a, ε ⟶ y q’ q q’ q x w y x w ...abb... ...abb... Stack Input Stack Input

  15. Transitions • Transitions of the form ε, ε⟶ ycan be followed without restrictions. ε, ε ⟶ y ε, ε ⟶ y q’ q q’ q x w y x w ...abb... ...abb... Stack Input Stack Input

  16. PDA Accept – Reject Status • The PDA accepts when there exists a computation path such that: • The computation path ends in an accept state • All the input is consumed • (no requirement for the stack) • The PDA rejects when all the paths: • Either end in a non-accepting state • Or are incomplete (meaning that at some point there is no possible transition under the current input and stack symbols)

  17. A PDA for {anbn : n ≥ 0} • We usually use the stack for counting. • For this language for example, you first insert all the as in the stack until you start seeing bs . • When you see the first b start removing as from the stack. • When you have consumed the whole string you check the stack: if it’s empty then this means that the number of as equals the number of bs.

  18. Is the stack empty? How can you check if the stack is empty? • What we usually do is to place a special symbol (for example a $) at the bottom of the stack. • Whenever we find the $ again we know that we reached the end of the stack. • In order to accept a string there is no need for the stack to be empty.

  19. A PDA for {anbn : n ≥ 0} a, ε ⟶ a ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  20. Visualization of {anbn:n ≥ 0} aaabbb a, ε ⟶ a ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  21. Visualization of {anbn:n ≥ 0} aaabbb a, ε ⟶ a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  22. Visualization of {anbn:n ≥ 0} aaabbb a, ε ⟶ a a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  23. Visualization of {anbn:n ≥ 0} aaabbb a, ε ⟶ a a a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  24. Visualization of {anbn:n ≥ 0} aaabbb a, ε ⟶ a a a a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  25. Visualization of {anbn:n ≥ 0} aaabbb a, ε ⟶ a a a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  26. Visualization of {anbn:n ≥ 0} aaabbb a, ε ⟶ a a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  27. Visualization of {anbn:n ≥ 0} aaabbb a, ε ⟶ a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  28. Visualization of {anbn:n ≥ 0} aaabbb a, ε ⟶ a ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  29. Visualization of {anbn:n ≥ 0} aab a, ε ⟶ a ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  30. Visualization of {anbn:n ≥ 0} aab a, ε ⟶ a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  31. Visualization of {anbn:n ≥ 0} aab a, ε ⟶ a a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  32. Visualization of {anbn:n ≥ 0} aab a, ε ⟶ a a a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  33. Visualization of {anbn:n ≥ 0} aab a, ε ⟶ a a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  34. Visualization of {anbn:n ≥ 0} aab a, ε ⟶ a a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  35. Visualization of {anbn:n ≥ 0} abb a, ε ⟶ a ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  36. Visualization of {anbn:n ≥ 0} abb a, ε ⟶ a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  37. Visualization of {anbn:n ≥ 0} abb a, ε ⟶ a a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  38. Visualization of {anbn:n ≥ 0} abb a, ε ⟶ a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  39. Visualization of {anbn:n ≥ 0} abb a, ε ⟶ a $ ε, ε ⟶ $ q0 q1 b, a⟶ ε ε, $ ⟶ ε q3 q2 b, a⟶ ε

  40. PDA formally • A PDA is a sextuple (Q, Σ, Γ, δ, q0, F), where: • Q is the set of states • Σ is the input alphabet • Γ is the alphabet for the stack • δ is the transition function • q0 is the start state • F is the set of accepting states About Γ: The stack alphabet can contain any symbol you want. It can be completely disjoint from Σ.

  41. L() : proper opening and closing parenthesis ε, ε ⟶ $ (, ε ⟶ * q0 q1 ), *⟶ ε ε, $ ⟶ ε

  42. Try it yourself • Create a PDA for the language: L= = {w : w contains an equal number of 0s and 1s}

  43. L= : equal number of 0s and 1s 0, ε ⟶ * 1, *⟶ ε q2 ε, $ ⟶ ε 0, ε ⟶ * ε, ε ⟶ $ q0 q1 1, ε ⟶ * ε, $ ⟶ ε 1, ε ⟶ * 0, *⟶ ε q3

  44. L= : equal number of 0s and 1s NPDA for this language ε, ε ⟶ $ 0, ε ⟶ 0 0, 1⟶ ε 1, ε ⟶ 1 1, 0 ⟶ ε q0 q1 ε, $ ⟶ ε

  45. PDA and Regular Languages • Regular languages can be recognized by PDA: • For every regular language there is an NFAεrecognizing it. • Simply add ε⟶ε in every transition for the stack (i.e just don’t use it at all). • The languages recognized by PDA is a superset of regular languages. • As we saw the language L = {anbn : n≥0} is recognized by some PDA. • L is not regular.

  46. Non-Determinism • Non- determinism means that we can have more than one choices. • Non-Deterministic: q2 0, a⟶ 1 q1 0, a⟶ 1 q3

  47. Non-Determinism • Non- determinism means that we can have more than one choices. • Non-Deterministic: q2 0, a⟶ 0 q1 0, a⟶ 1 q3

  48. Non-Determinism • Non- determinism means that we can have more than one choices. • Non-Deterministic: 0, a⟶ 0 0, a⟶ 1 q1 q2

  49. Non-Determinism • Non- determinism means that we can have more than one choices. • Non-Deterministic: q2 0, ε⟶ 0 q1 0, a⟶ 1 q3

  50. Non-Determinism • Non- determinism means that we can have more than one choices. • Non-Deterministic: q2 ε, b⟶ 0 q1 0, b⟶ 1 q3

More Related