1 / 1

Deep Brain Stimulation for Treating Parkinsons ’ Disease

Deep Brain Stimulation for Treating Parkinsons ’ Disease. Investigators: Ishita Basu,ECE ; Daniela Tuninetti,ECE ; Daniel Graupe,ECE ; Konstantin Slavin,Neurosurgery Primary Grant Support: Dr. Tuninetti’s start-up package.

arnold
Télécharger la présentation

Deep Brain Stimulation for Treating Parkinsons ’ Disease

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Deep Brain Stimulation for Treating Parkinsons’ Disease Investigators: IshitaBasu,ECE; Daniela Tuninetti,ECE; Daniel Graupe,ECE; Konstantin Slavin,Neurosurgery Primary Grant Support: Dr. Tuninetti’s start-up package. • MOTIVATION: Deep Brain Stimulation (DBS) is a surgical method of relieving advanced stage Parkinson’s Disease (PD) patients of most of their debilitating symptoms (like tremor). DBS involves stimulating the area of the brain that controls movements with a high frequency train of electrical pulses through an implanted electrode. • PROBLEMS: In today’s DBS systems the stimulation parameters are optimized manually by the physician with visual feedbacks from the patient. Moreover, the stimulation is continuous and constant over time. • OBJECTIVES: 1) Design an intermittent deep brain stimulation instead of a continuous stimulation. This ensures lower power requirements, a longer battery life, and possiblye reduce damage to healthy neurons in PD patients. 2) Tune the parameters of the DBS (frequency, pulse amplitude, pulse duration) by employing a closed-loop control. This allows to tailor the DBS stimulation to each individual patients thus enhancing DBS efficacy. • A cluster of actively firing neurons is modeled as a group of coupled oscillators that is mathematically described by stochastic differential (Langevin) equations. • The signals measured from PD patients, such as the local field potential from the brain and the muscular potential from surface EMG, are modeled parametrically. • The signal parameters are adaptively estimated for each patient from the measured signals and to optimize the DBS stimulation parameters. • Simulation results shows that on an average a train of high frequency pulses with its frequency and/or amplitude stochastically modulated with Gaussian noise performs better than its deterministic counterpart. • Next, we will test the above hypothesis on a model with parameters extracted from actual measured signals. • We will trace the evolution of the parameters extracted from the measured signals which will serve as a reference in the control loop. • We will optimize the DBS stimulation parameters.

More Related