1 / 42

Temporal and Spatial pulse shaping at CEA SACLAY

Temporal and Spatial pulse shaping at CEA SACLAY. D.Garzella, O.Gobert, S. Grabielle, J-F. Hergott, Ph. Hollander , D. Jourdain, F. Lepetit, M. Perdrix, O.Tcherbakoff CEA/DSM/DRECAM/SPAM T.Oksenhendler FASTLITE.

artan
Télécharger la présentation

Temporal and Spatial pulse shaping at CEA SACLAY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Temporal and Spatial pulse shaping at CEA SACLAY D.Garzella, O.Gobert, S. Grabielle, J-F. Hergott, Ph. Hollander, D. Jourdain, F. Lepetit, M. Perdrix, O.Tcherbakoff CEA/DSM/DRECAM/SPAM T.Oksenhendler FASTLITE This work has been partially supported by the EU commission in the Sixth Framework Program Contract n° 011935 EUROFEL

  2. Overview • Motivations • Saclay Laser Interaction Center • EUROFEL and ARC en CIEL • Photoinjector Studies • fs Longitudinal Pulse Shaping • Goal • Phase/Amplitude Modulation • IR shaping and THG • THG and UV Shaping • Spatial Pulse Shaping • Goal • UV Beam Shaper • Conclusions and Further Studies

  3. SPAM Atoms, Photons and Molecules Laboratory Matter under extremes conditions Laboratoire Francis Perrin Femtosecond Laser Servers • Applications of Plasmas • High Energy Density Matter • Attophysics • High Intensity Physics • Dynamics of Chemical Reactivity • Excited Biomolecules • Nanometrics Buildings • Theoretical Chemistry Technical Support (Mechanics, Vacuum, CAD) Laser Sources Teams Saclay Laser Interaction Center

  4. for scientists CEA, France, Europe 60%, 20%, 20% Open Sources More than 90% Reliability SLIC 10 years experience - 4 servers – 10 beamlines Luca : tunability from 10 to 800 nm (HHG, ) SOFOCKLE, PLFA : High Repetition Rate (KHz) UHI10 : High Power 10 TW ( ) NOPA Complementarity 100 TW in 2008

  5. JADE Compressor JADE (Gain x10) JADE (527 nm, 20 W) 4.7W JADE Ti:Sa 30 fs USERS JADE Multipass Amplifier 15 fs, 70 nm Regenerative Amplifier (Gain x105) Master Oscillator 2W POCKELS 6W dazzler l/2 POCKELS ph2 VERDI (532 nm, 4 W) 9W Ti Sa POCKELS 660mW ph1 TiSa POCKELS Preamplifier (Gain x3) Stretcher PLFA (Tunable Femtosecond Laser Platform) 1 KHz, 20 mJ, 30 fs pulses

  6. , towards the Technical Design Report • To initiate the overview for ARC EN CIEL EUROFEL/ARC en CIEL • CEA/SPAM is involved in 3 WG in the 2005-2007 EUROFEL program • Photoinjectors • Synchronization • Seeding and Harmonic Generation

  7. PhotoInjectors related Studies • R&D program on ultrashort laser pulses for Accelerator Physics community • 3 high Power Laser Facilities (SLIC) • Temporal and Spectral Diagnostics • Broadband Secondary Emission sources (OPAs, HHG in gases) • Aiming at creating an Injector Test Stand • Lasers • Photocathodes • Guns ?

  8. Motivations • Saclay Laser Interaction Center • EUROFEL and ARC en CIEL • Photoinjector Studies • fs Longitudinal Pulse Shaping • Goal • Phase/Amplitude Modulation • IR shaping and THG • THG and UV Shaping • Spatial Pulse Shaping • Goal • UV Beam Shaper • Conclusions and Further Studies

  9. 1 nC Charge Requirements For a UV laser pulse (l=266 nm) Goal • Obtention of a • supergaussian-like • temporal pulse. FWHM ~ 5- 20 ps, Rise time < 1 ps Fall time < 1 ps Ripples < +/- 10% max (critical periodicity, instabilities?) Lambda ~ 266 nm Energy/pulse up to 1mJ Energy fluctuations ? 50 nJ -1 mJ Cs2Te Cathodes (ARC EN CIEL, Flash, FZD) 0.5 % - 10 % 50-500 mJ 10-5-10-4 Metallic (e.g. copper) NC cathodes (SPARC, Fermi) 100 mJ 5 x 10-5 SC All Niobium cathodes (BNL) Temporal Structure NC RF gun (SPARC, Fermi) Single Pulse, 10-50 Hz 1-9 MHz pulse trains, 1-800 ms, 1-10 Hz NC RF gun (FLASH, XFEL) NC RF gun and DC/RF SC gun (ARC EN CIEL, FZD, Pekin Univ.) CW Single Pulse, 1-10 KHz

  10. Required Pulse Shapes • Super Gaussian Pulses (« beer cans », « pancakes » ?) • Ellipsoidal Pulses • Quadratic Ramp (see M. Trovo’ et al. , FEL 2006)

  11. Amplitude and Phase Modulation : the Dazzler Polychromatic acoustic pulse A matched to Polychromatic optical pulse E A( acoustic)  50% for 20fs  ~7ps <0.3nm @800nm Eout()=A(acoustic) Ein() Eout(t)=A(α t)  Ein(t) Ein Eout Amplitude and Phase Measurement • Define the temporal Target 2) Spectral Interferometry Spectrometer I.R. beam 800 nm, 50 fs FT Stretcher mainly j(2) IR Dazzler UV Up-converter IR beam 8OO nm, ~10 ps FT Shaped IR beam 800 nm, ~ 5 ps Shaped U.V. beam 266 nm

  12. Phase retrieving Spectral interferogram Fourier Transform-1 Time domain Time domain Filtering & Fourier Transform Spectral phase Spectral Amplitude &phase Combination Fourier Transform-1 Temporal intensity

  13. Generating square time shapes : adding phase shaping temporal phase >3ps, rise time<400fs Initial short pulse 50fs  Time *Bandwidth > 60 Fourier Transform (with phase) Bandwidth matching  Spectral Amplitude & Phase shaping

  14. Generating parabolic time shapes : adding phase shaping temporal phase Parabolic >3ps  Time *Bandwidth > 60 Initial short pulse 50fs Fourier Transform (with phase) Bandwidth matching  Spectral Amplitude & Phase shaping

  15. Numerical example : Amplitude Modulation and Quadratic/Complex Spectral Phase

  16. Experimental setup • One line of LUCA laser (2 TW system 1/3 CPA laser facility at Saclay Laser Interaction Center) : some µJ, 800 nm, FWHM ~20 nm, tp~ps • Spectral interferometry (Mach-Zenhder interferometer, Dazzler I.R. HR (0.3 nm resolution) in one arm, single shot acquisition…)

  17. Amplitude modulation Supergaussian Pulse GaussianSuperGaussian

  18. Phase modulation

  19. Spectrometer P P Dazzler Pockels Oscillator Dazzler IR WB resolution 0.6 nm Single-Shot Oscillator Pulse Shaping (I)

  20. Single-Shot Oscillator Pulse Shaping (II)

  21. Single-Shot Oscillator Pulse Shaping (III)

  22. Single –Shot result in the IR

  23. Direct UV Pulse Shaping Experimental set-up 266nm 800nm UV-Dazzler KDP 20Hz Ti:Sa Laser system 3ω Amplitude spectrometer Phase spectrometer Output

  24. UV-Dazzler KDP 266nm 20Hz Ti:Sa Laser system 3ω Amplitude measure spectrometer Phase measure spectrometer Experimental Results (I) Direct UV pulse shaping : UV-AOPDF KDP Experimental results Temporal intensity result

  25. UV-Dazzler KDP 266nm 20Hz Ti:Sa Laser system 3ω Amplitude measure spectrometer Phase measure spectrometer Experimental Results (II) Temporal intensity result

  26. Ellipsoidal pulse shaping • (very) preliminary work. • Amplitude (+phase) modulation at 266 nm • Amplitude (+phase) modulation at 800 nm+spatial shaping. • Cross-phase modulation to realize spatio-temporal shaping.

  27. Motivations • Saclay Laser Interaction Center • EUROFEL and ARC en CIEL • Photoinjector Studies • fs Longitudinal Pulse Shaping • Goal • Phase/Amplitude Modulation • IR shaping and THG • THG and UV Shaping • Spatial Pulse Shaping • Goal • UV Beam Shaper • Conclusions and Further Studies

  28. Isodensity Cylinder of Photoelectrons (« Beer Can ») Option 1 : Amplitude Modulation • Option 2 : Spatial phase & amplitude modulation • Large Depth of Field • Amplitude wavefront can be tilted, thus compensating ellipticity on the cathode • Photons time arrival ? • Modulate Wavefront pattern ? UV laser pulse t~10 ps Electron Bunch photocathode Pulse Shaper Hoffnagle/Jefferson (Opt. Eng. 42(11) 3090–3099 November 2003 Deformable Mirror

  29. Pulse Shaper Basics Spherical Plan Lens Spherical Plan Lens Define the Aspherical Elements

  30. Pulse Shaper : ZEMAX Ray Tracing (I) Aspherical Lens n°2 Aspherical Lens n°1 Stretching Factor : 0.1 on the vertical scale

  31. Pulse Shaper : ZEMAX Ray Tracing (II) Asphère n°1 Asphère n°2 Faisceau collimaté Distribution homogène des rayons

  32. Pulse Shaper : ZEMAX Ray Tracing (III)

  33. Pulse Shaper : ZEMAX Ray Tracing (IV) Input gaussian Spatial Distribution

  34. Beam Propagation (I)

  35. Beam Propagation (II) l=550 nm, Input waist w0=2.366 mm, Aperture= 4 mm

  36. Beam Propagation : Depth of Field (I) Z=0 Z = 30 cm Z = 50 cm Z = 1 m Z = 2 m Z = 9 m

  37. Beam Propagation : Depth of Field (II)

  38. Input Beam Wavefront Dependency

  39. Input Beam Size Dependency

  40. 3 w generator Gaussian UV Input pulse Generation Non perfect gaussian Beam: Amplitude and wavefront modulation Filtering Hole Collimated gaussian Beam 3 Lenses System (f,-f/4,f) • Requested Specifications : • Input Collimated Beam • Output Collimated Beam • Variable Magnification in [1/2,2] • Operating Wavelength : 266 nm

  41. Conclusion and Further Studies • IR and UV longitudinal pulse shaping • 3 ps square and parabolic pulses obtained • Ongoing experiments for amplified 1 mJ UV pulses • A « real » ellipsoidal pulse • UV Spatial Shaping • UV Beam Shaper Test is going just right now! • UV Deformable Mirror very soon ! • Combination of both • Complete Shaping

  42. Conclusion and Further Studies (II) • R&D on : • UV @266 nm and @200 nm high pulse energy sources • Multiparameters photoemission (energy, spatial amplitude and phase modulation, wavelength, angle-resolved) • High Repetition Rate Sources Thank You for your attention! TELL ME WHAT YOU WANT!!

More Related