1 / 15

FE CHEMISTRY REVIEW STEVE DANIEL sdaniel@mines

FE CHEMISTRY REVIEW STEVE DANIEL sdaniel@mines.edu. CHEMICAL PERIODICITY Arrangement of elements in the Periodic Table allows prediction of relative properties of atoms based on the [overly] simplistic ideas: 1. Atoms in the same row have outermost electrons in the same “shell”.

ashlyn
Télécharger la présentation

FE CHEMISTRY REVIEW STEVE DANIEL sdaniel@mines

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. FE CHEMISTRY REVIEW STEVE DANIEL sdaniel@mines.edu

  2. CHEMICAL PERIODICITY • Arrangement of elements in the Periodic Table allows prediction of relative properties of atoms based on the [overly] simplistic ideas: • 1. Atoms in the same row have outermost electrons in the same “shell”. • 2. Strength of attraction of the outermost electrons depends on the effective nuclear charge and which “shell” the outermost electrons occupy (nominal distance from the nucleus). • 3. Effective nuclear charge (number of protons in the nucleus partially decreased by electronic repulsions) increases left to right in the Periodic table. • Relative atomic radii, ionic radii, ionization potentials, electron affinities can be rationalized. For example, arrange in order of: • 1. increasing radius: P, N, F • 2. increasing radius: Ar, S2-, Ca2+ • 3. increasing first ionization potential: Mg, K, S • 4. increasing electron affinity: S, Si, Ga

  3. 1. increasing radius: P, N, F [F < N < P] • 2. increasing radius: Ar, S2-, Ca2+ [Ca2+< Ar < S2-] • 3. increasing first ionization potential: Mg, K, S [K < Mg < S] • 4. increasing electron affinity: S, Si, Ga [Ga< Si < S]

  4. RULES IN PRIORITY ORDERFOR OXIDATION NUMBERS • 1. S(oxidation numbers) = charge • 2. Group IA (Li,Na,K,etc) assign +1 • 3. Group 2A (Be,Mg,Ca,etc) assign +2 • 4. B, Al assign +3 • 5. Hydrogen assign +1 6. Oxygen assign -2

  5. Balance in basic solution: NH2OH + MnO2(s) → Mn2+ + NO(g) • 1. Assign oxidation numbers -1+1-2+1 +4 -2 +2 +2-2 NH2OH + MnO2(s) → Mn2+ + NO(g) NOTE +1 -2 +1 -2 -2 +1 2 H2O ↔ H3O+ + OH-

  6. 1. Assign oxidation numbers -1+1-2+1 +4 -2 +2 +2-2 NH2OH + MnO2(s) → Mn2+ + NO(g) +1 -2 +1 -2 -2 +1 2 H2O ↔ H3O+ + OH- • 2. Balance oxidation number changes -1+1-2+1 +4 -2 +2 +2-2 2NH2OH + 3MnO2(s) → 3Mn2+ + 2NO(g) (+3) (-2) • 3. Balance charge 2NH2OH + 3MnO2(s) → 3Mn2+ + 2NO(g) net zero net 6+ 2NH2OH + 3MnO2(s) → 3Mn2+ + 2NO(g) + 6OH- net zero net zero 4. Balance remaining atoms (O and H) 2NH2OH + 3MnO2(s) → 3Mn2+ + 2NO(g) + 6OH- total 8 O atoms total 8 O atoms So nothing is needed! 5. Check last atoms (H) 2NH2OH + 3MnO2(s) → 3Mn2+ + 2NO(g) + 6OH- total 6 H atoms total 6 H atoms

  7. Balance in acidic solution: • Cr2O72- + N2H5+ → NO2(g) + Cr3+ • 1. Assign oxidation numbers • +6 -2 -2 +1 +4 -2 +3 • Cr2O72-+ N2H5+ → NO2(g) + Cr3+ • 2. Balance oxidation number changes • +6 -2 -2 +1 +4 -2 +3 • 2Cr2O72-+ N2H5+ → 2 NO2(g) + 4Cr3+ • (-6) (+12) • 3. Balance charge • 2Cr2O72-+ N2H5+ → 2 NO2(g) + 4Cr3+ • net 3- net 12+ • 15H3O++ 2Cr2O72- + N2H5+ → 2 NO2(g) + 4Cr3+ • net 12+ net 12+ • 4. Balance remaining atoms (O and H) • 15H3O++ 2Cr2O72- + N2H5+ → 2 NO2(g) + 4Cr3+ • total 50 H atoms total 0 H atoms • 15H3O++ 2Cr2O72- + N2H5+ → 2 NO2(g) + 4Cr3++ 25H2O • 5. Check last atoms (O) • 15H3O++ 2Cr2O72- + N2H5+ → 2 NO2(g) + 4Cr3++ 25H2O • total 29 O atoms total 29 O atoms

  8. STOICHIOMETRY • A solid sample is 15.0% Na2Cr2O7. How many grams of N2H5Cl is needed to react with 5.00 g of this sample. • 15H3O++ 2Cr2O72- + N2H5+ → 2 NO2(g) + 4Cr3++ 25H2O • 5.00g sample x .150g Na2Cr2O7 x mole Na2Cr2O7 x • g sample 262.0g Na2Cr2O7 • x mole N2H5Cl x 68.5g N2H5Cl = 0.0980 g N2H5Cl • 2 mole Na2Cr2O7 mole N2H5Cl • 2. How many liters NO2(g) at 30.0oC and 620.0torr are formed when the 5.00 g of sample is reacted? • IDEAL GAS LAW PV = nRT V = nRT/P • 5.00g sample x .150g Na2Cr2O7 x mole Na2Cr2O7 x • g sample 262.0g Na2Cr2O7 • x 2mole NO2 x .08205Latm x 303.15K x 760.0torr = .0873 L • 2mole Cr2O7 moleNO2K 620.0torr atm

  9. CONCENTRATION UNITS Molarity = M = moles solute/L solution Molality = m = moles solute/kg solvent Normality = N = equivalents solute/L solution REDOX # equivalents/mole = ox.# change per formula 2Cr2O72-+ N2H5+ → 2 NO2(g) + 4Cr3+ (-6) (+12) So Na2Cr2O7 has 6 eq/mole and N2H5Cl has 12eq/mole here ACID-BASE # eq/mole = # H+ gained or lost per formula   NH3 + H3PO3 → NH4+ + HPO32- NH3has 1eq/mole and H3PO3 has 2eq/mole in this reaction How many mLs 12.0M HCl must be mixed (assuming additive volumes) with 25.0 mL 1.50M HCl to yield 3.00M HCl? Total volume = V + 0.250 L Total moles = (.0250L)(1.50mole/L) + V(12.0mole/L) = .0375 +12.0V (.0375+12.0V)/(V+.0250) = 3.00 mole/L V = 0.00417 L or 4.17 mls

  10. 4. How many mLs of 3.00N N2H5Cl solution would be required to react with 5.00g of the sample?  5.00g sample x .150g Na2Cr2O7 x mole Na2Cr2O7 x g sample 262.0g Na2Cr2O7   x mole N2H5Cl x 12 eq N2H5Cl x L N2H5Cl x 1000mL = 5.73 mL 2mole Cr2O72- mole N2H5Cl 3.00eq N2H5Cl L • 5. Titration of 35.00 mL of a Ba(OH)2 solution requires 27.63 mL of 3.00 M N2H5Cl. What is the molarity of Ba(OH)2 solution? What is its normality? • Ba(OH)2 + 2 N2H5Cl → BaCl2 + 2 H2O + 2 N2H4 • .02763L N2H5Cl x 3.00 mole N2H5Cl x mole Ba(OH)2 = 1.18 mole Ba(OH)2 = 1.18M .03500mLBa(OH)2 L N2H5Cl 2 mole N2H5Cl L • 1.18 mole Ba(OH)2 x 2eq Ba(OH)2= 2.36N • L Ba(OH)2 mole Ba(OH)2

  11. 6. When 250 g CaCO3 and 300 mL 3.00M H3PO4 are mixed, how many L CO2(g) at 30.0oC and 700torr result? 3CaCO3+ 2H3PO4 → 3CO2(g) + 3H2O + Ca3(PO4)2 250g CaCO3 x mole CaCO3 x 3mole CO2x .08205Latmx 303.15K x 760torr = 100 g CaCO3 3mole CaCO3 moleCO2K 700torr atm = 67.4 LCO2 .300L H3PO4 x 3.00mole H3PO4 x 3mole CO2 x RT = 36.5L L H3PO42mole H3PO4 P

  12. HESS’ LAW Heats of combustion of ethanol (C2H5OH) and acetic anhydride (C4H6O3) are 327.6 and 431.9 kcal/mole, respectively. Calculate the standard enthalpy change for: 2 C2H5OH + 2 O2(g) → C4H6O3 + 3 H2O(l) 2 C2H5OH + 6 O2(g) → 4 CO2(g) + 6 H2O(l)DH1o = 2(-327.6) 4 CO2(g) + 3 H2O → C4H6O3 + 4 O2(g)DH2o = -1(-431.9) DHrxno= DH1o + DH2o = -655.2-(-431.9) = -223.3 kcal/mole rxn If formation enthalpies rather than heats of combustion are given, then in general: DHrxno = Σ nprod∆Hof,prod - Σnreact∆Hof,react 3 H2(g) + 3/2 O2(g) → 3H2O(l)DH = 3 DHf(H2O(l)) 4 C(gr) + 3 H2(g) + 3/2 O2(g) → C4H6O3DH = DHf(C4H6O3) 2 C2H5OH → 4 C(gr) + 6 H2(g) + O2(g) DH = -2DHf(C2H5OH) 2 C2H5OH + 2 O2(g) → C4H6O3 + 3 H2O(l) DH = 3 DHf(H2O(l)) + DHf(C4H6O3) -2DHf(C2H5OH)

  13. ELECTROCHEMISTRY • 1. For the voltaic cell: Zn/Zn2+(.200M)//Fe3+(.500M),Fe2+(.100M)/Pt write anode, cathode, and cell reactions (Eo = + 0.761v and -0.771v for Zn→Zn2+ and Fe2+→Fe3+, respectively). • Anode (Oxidation half-reaction): Zn → Zn2+ + 2e- • Cathode (Reduction half-reaction): Fe3+ + e- → Fe2+ • Cell reaction: Zn + 2 Fe3+ → Zn2+ + 2 Fe2+ • 2. Calculate Eo and E for the cell. • Eocell= +0.761 – (-0.771) = +1.532v. • Ecell= 1.532 - .0591 log[Zn2+][ Fe2+]2= 1.532 –(.0591) log(.100)2(.200)= +1.594 v. • n[Fe3+]2 2 (.500)2 • 3. If each electrode compartment contains 500mL of solution and the Zn electrode weighs 5.00g, how long can the cell operate at an average current of 2.00amp? • .500mole Fe3+ x eq Fe3+ x .500L = 0.250 eq Fe3+ • L solution moleFe3+ • 5.00gZn x mole Zn x 2 eq Zn = 0.153 eq Zn • 65.4gZn moleZn • .153 eq x 96487 coul x second = 7.38 x 103 seconds • eq 2.00 coul

  14. ACID-BASE EQUILIBRIA • 1. Calculate the pH of 0.50M HF solution. Ka = 7.1 x 10-4. • HF + H2O ↔ H3O+ + F- • .50-x x x • Ka= 7.1 x 10-4= [H3O+][ F-]/[HF] = x2/(.50-x) • x = 1.85 x 10-2 pH = -log[H3O+] = 1.73 • 2. If 0.20 mole NaF is dissolved in 300.0mL 0.50M HF, what is the solution pH? • HF + H2O ↔ H3O+ + F- • .50-x x (.20/.300)+x • 7.1 x 10-4= [H3O+][ F-]/[HF] = x(.667+x)/(.50-x) • x = [H3O+] = 5.3 X 10-4 pH = 3.28

More Related