400 likes | 620 Vues
Linear Modelling III. Richard Mott Wellcome Trust Centre for Human Genetics. Synopsis. Logistic Regression Mixed Models. Logistic Regression and Statistical Genetics. Applicable to Association Studies Data: Binary outcomes ( eg disease status)
E N D
Linear Modelling III Richard Mott Wellcome Trust Centre for Human Genetics
Synopsis • Logistic Regression • Mixed Models
Logistic Regression andStatistical Genetics • Applicable to Association Studies • Data: • Binary outcomes (eg disease status) • Dependent on genotypes [+ sex, environment] • Aim is to identify which factors influence the outcome • Rigorous tests of statistical significance • Flexible modelling language • Generalisation of Chi-Squared Test
Data • Data for individual labelled i=1…n: • Binary Response yi • Unphased Genotypes gij for markers j=1..m
Coding Unphased Genotypes • Several possibilities: • AA, AG, GG original genotypes • 12, 21, 22 • 1, 2, 3 • 0, 1, 2 # of G alleles • Missing Data • NA default in R
Using R • Load genetic logistic regression tools • > source(‘logistic.R’) • Read data table from file • > t <- read.table(‘geno.dat’, header=TRUE) • Column names • names(t) • t$yresponse (0,1) • t$m1, t$m2, ….Genotypes for each marker
Contigency Tables in R • ftable(t$y,t$m31)prints the contingency table > ftable(t$y,t$m31) 11 12 22 0 515 387 75 1 28 11 2 >
Chi-Squared Test in R > chisq.test(t$y,t$m31) Pearson's Chi-squared test data: t$y and t$m31 X-squared = 3.8424, df = 2, p-value = 0.1464 Warning message: Chi-squared approximation may be incorrect in: chisq.test(t$y, t$m31) >
The Logistic Model • Effect of SNP k on phenotype • Null model
The Logistic Model • Prob(Yi=1) = exp(hi)/(1+exp(hi)) • hi = Sjxijbj- Linear Predictor • xij– Design Matrix (genotypes etc) • bj– Model Parameters (to be estimated) • Model is investigated by • estimating the bj’s by maximum likelihood • testing if the estimates are different from 0
The Logistic FunctionProb(Yi=1) = exp(hi)/(1+exp(hi)) Prob(Y=1) h
Additive Genotype Model • Code genotypes as • AA x=0, • AG x=1, • GG x=2 • Linear Predictor • h = b0 + xb1 • P(Y=1|x) = exp(b0 + xb1)/(1+exp(b0 + xb1)) • PAA = P(Y=1|x=0) = exp(b0)/(1+exp(b0)) • PAG = P(Y=1|x=1) = exp(b0 + b1)/(1+exp(b0 + b1)) • PGG = P(Y=1|x=2) = exp(b0 + 2b1)/(1+exp(b0 + 2b1))
Additive Model: b0 = -2 b1 = 2PAA = 0.12 PAG = 0.50 PGG = 0.88 Prob(Y=1) h
Additive Model: b0 = 0 b1 = 2PAA = 0.50 PAG = 0.88 PGG = 0.98 Prob(Y=1) h
Recessive Model • Code genotypes as • AA x=0, • AG x=0, • GG x=1 • Linear Predictor • h = b0 + xb1 • P(Y=1|x) = exp(b0 + xb1)/(1+exp(b0 + xb1)) • PAA = PAG = P(Y=1|x=0) = exp(b0)/(1+exp(b0)) • PGG = P(Y=1|x=1) = exp(b0 + b1)/(1+exp(b0 + b1))
Recessive Model: b0 = 0 b1 = 2PAA = PAG = 0.50 PGG = 0.88 Prob(Y=1) h
Genotype Model • Each genotype has an independent probability • Code genotypes as (for example) • AA x=0, z=0 • AG x=1, z=0 • GG x=0, z=1 • Linear Predictor • h = b0 + xb1+zb2 two parameters • P(Y=1|x) = exp(b0 + xb1+zb2)/(1+exp(b0 + xb1+zb2)) • PAA = P(Y=1|x=0,z=0) = exp(b0)/(1+exp(b0)) • PAG = P(Y=1|x=1,z=0) = exp(b0 + b1)/(1+exp(b0 + b1)) • PGG = P(Y=1|x=0,z=1) = exp(b0 + b2)/(1+exp(b0 + b2))
Genotype Model: b0 = 0 b1 = 2 b2 = -1 PAA = 0.5 PAG = 0.88 PGG = 0.27 Prob(Y=1) h
Data Transformation • g <- t$m1 • use these functions to treat a genotype vector in a certain way: • a <- additive(g) • r <- recessive(g) • d <- dominant(g) • g <- genotype(g)
Fitting the Model • afit <- glm( t$y ~ additive(g),family=‘binomial’) • rfit <- glm( t$y ~ recessive(g),family=‘binomial’) • dfit <- glm( t$y ~ dominant(g),family=‘binomial’) • gfit <- glm( t$y ~ genotype(g),family=‘binomial’) • Equivalent models: • genotype = dominant + recessive • genotype = additive + recessive • genotype = additive + dominant • genotype ~ standard chi-squared test of genotype association
Parameter Estimates > summary(glm( t$y ~ genotype(t$m31), family='binomial')) Coefficients: Estimate Std. Error z value Pr(>|z|) b0 (Intercept) -2.9120 0.1941 -15.006 <2e-16 *** b1 genotype(t$m31)12 -0.6486 0.3621 -1.791 0.0733 . b2 genotype(t$m31)22 -0.7124 0.7423 -0.960 0.3372 --- Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 >
Analysis of DevianceChi-Squared Test > anova(glm( t$y ~ genotype(t$m31), family='binomial'), test="Chisq") Analysis of Deviance Table Model: binomial, link: logit Response: t$y Terms added sequentially (first to last) Df Deviance Resid. DfResid. Dev NULL 1017 343.71 genotype(t$m31) 2 3.96 1015 339.76
Model Comparison • Compare general model with additive, dominant or recessive models: > afit <- glm(t$y ~ additive(t$m20)) > gfit <- glm(t$y ~ genotype(t$m20)) > anova(afit,gfit) Analysis of Deviance Table Model 1: t$y ~ additive(t$m20) Model 2: t$y ~ genotype(t$m20) Resid. Df Resid. Dev Df Deviance 1 1016 38.301 2 1015 38.124 1 0.177 >
Scanning all Markers > logscan(t,model=‘additive’) Deviance DF Pval LogPval m1 8.604197e+00 1 3.353893e-03 2.474450800 m2 7.037336e+00 1 7.982767e-03 2.097846522 m3 6.603882e-01 1 4.164229e-01 0.380465360 m4 3.812860e+00 1 5.086054e-02 1.293619014 m5 7.194936e+00 1 7.310960e-03 2.136025588 m6 2.449127e+00 1 1.175903e-01 0.929628598 m7 2.185613e+00 1 1.393056e-01 0.856031566 m8 1.227191e+00 1 2.679539e-01 0.571939852 m9 2.532562e+01 1 4.842353e-07 6.314943565 m10 5.729634e+01 1 3.748518e-14 13.426140380 m11 3.107441e+01 1 2.483233e-08 7.604982503 … … …
Multilocus Models • Can test the effects of fitting two or more markers simultaneously • Several multilocus models are possible • Interaction Model assumes that each combination of genotypes has a different effect • eg t$y ~ t$m10 * t$m15
Multi-Locus Models > f <- glm( t$y ~ genotype(t$m13) * genotype(t$m26) , family='binomial’, test="Chisq") > anova(f) Analysis of Deviance Table Model: binomial, link: logit Response: t$y Terms added sequentially (first to last) Df Deviance Resid. DfResid. Dev NULL 1017 343.71 genotype(t$m13) 2 108.68 1015 235.03 genotype(t$m26) 2 1.14 1013 233.89 genotype(t$m13):genotype(t$m26) 3 6.03 1010 227.86 > pchisq(6.03,3,lower.tail=F) calculate p-value [1] 0.1101597
Adding the effects of Sex and other Covariates • Read in sex and other covariate data, eg. age from a file into variables, say a$sex, a$age • Fit models of the form • fit1 <- glm(t$y ~ additive(t$m10) + a$sex + a$age, family=‘binomial’) • fit2 <- glm(t$y ~ a$sex + a$age, family=‘binomial’)
Adding the effects of Sex and other Covariates • Compare models using anova – test if the effect of the marker m10 is significant after taking into account sex and age • anova(fit1,fit2)
Random EffectsMixed Models • So far our models have had fixed effects • each parameter can take any value independently of the others • each parameter estimate uses up a degree of freedom • models with large numbers of parameters have problems • saturation - overfitting • poor predictive properties • numerically unstable and difficult to fit • in some cases we can treat parameters as being sampled from a distribution – random effects • only estimate the parameters needed to specify that distribution • can result in a more robust model
Example of a Mixed Model • Testing genetic association across a large number of of families • yi = trait value of i’th individual • bi = genotype of individual at SNP of interest • fi = family identifier (factor) • ei = error, variance s2 • y = m + b + f + e • If we treat family effects f as fixed then we must estimate a large number of parameters • Better to think of these effects as having a distribution N(0,t2) for some variance t which must be estimated • individuals from the same family have the same f and are correlated • cov = t2 • individuals from different families are uncorrelated • genotype parameters b still treated as fixed effects • mixed model
Mixed Models • y = m + b + f + e • Fixed effects model • E(y) = m + b + f • Var(y) = Is2 • I is identity matrix • Mixed model • E(y) = m + b • Var(y) = Is2 + Ft2 • F is a matrix, Fij = 1 if i, j in same family • Need to estimate both s2 and t2
Generalised Least Squares • y = Xb + e • Var(y) = V (symmetric covariance matrix) • V = Is2 (uncorrelated errors) • V = Is2 + Ft2 (single grouping random effect) • V = Is2 + Gt2 (G = genotype identity by state) • GLS solution, if V is known • unbiased, • efficient (minimum variance) • consistent (tends to true value in large samples) • asymptotically normally distributed
Multivariate Normal Distribution • Joint distribution of a vector of correlated observations • Another way of thinking about the data • Estimation of parameters in a mixed model is special case of likelihood analysis of a MVN • y ~ MVN(m, V) • m is vector of expected values • V is variance-covariance matrix • If V = Is2 then elements of y are uncorrelated and equivalent to n independent Normal variables • probability density/Likelihood is
Henderson’s Mixed Model Equations • General linear mixed model. • b are fixed effect • u are random effects • X, Z design matrices
Mixed Models • Fixed effects models are special cases of mixed models • Mixed models sometimes are more powerful (as fewer parameters) • But check that the assumption effects are sampled from a Normal distribution is reasonable • Differences between estimated parameters and statistical significance in fixed vs mixed models • Shrinkage: often random effect estimates from a mixed model have smaller magnitudes than from a fixed effects model.
Mixed Models in R • Several R packages available, e.g. • lme4 general purpose mixed models package • emma for genetic association in structured populations • Formulas in lme4, eg test for association between genotype and trait • H0: E(y) = m • vs • H1: E(y) = m + b • Var(y) = Is2 + Ft2 • h0 = lmer(y ~ 1 +(1|family), data=data) • h1 = lmer(y ~ genotype +(1|family), data=data) • anova(h0,h1)
Formulas in lmer() • y ~ fixed.effects + (1|Group1) + (1|Group2) etc • random intercept models • y ~ fixed.effects +(1|Group1) + (x|Group1) • random slope model
Example: HDL Data • > library(lme4) • > b=read.delim("Biochemistry.txt”) • cc=complete.cases(b$Biochem.HDL) • > f0=lm(Biochem.HDL ~ Family , data=b,subset=cc) • > f1=lmer(Biochem.HDL ~ (1|Family) , data=b,subset=cc) • > anova(f0) • Analysis of Variance Table • Response: Biochem.HDL • Df Sum Sq Mean Sq F value Pr(>F) • Family 175 147.11 0.84064 5.2098 < 2.2e-16 *** • Residuals 1681 271.24 0.16136 • --- • Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 • > f1 • Linear mixed model fit by REML • Formula: Biochem.HDL ~ (1 | Family) • Data: b • Subset: cc • AIC BIC logLik deviance REMLdev • 2161 2178 -1078 2149 2155 • Random effects: • Groups Name Variance Std.Dev. • Family (Intercept) 0.066633 0.25813 • Residual 0.161487 0.40185 • Number of obs: 1857, groups: Family, 176 • Fixed effects: • Estimate Std. Error t value • (Intercept) 1.60615 0.02263 70.97 • > plot(resid(f0),resid(f1))