html5-img
1 / 45

Modern Chemistry Chapter 6 Chemical Bonding

Modern Chemistry Chapter 6 Chemical Bonding. Sections 1-5 Introduction to Chemical Bonding Covalent Bonding & Molecular Compounds Ionic Bonding & Ionic Compounds Metallic Bonding Molecular Geometry. Chapter Vocabulary. VSEPR theory Hybridization Hybrid orbitals Dipole Hydrogen bonding

baby
Télécharger la présentation

Modern Chemistry Chapter 6 Chemical Bonding

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Modern ChemistryChapter 6Chemical Bonding Sections 1-5 Introduction to Chemical Bonding Covalent Bonding & Molecular Compounds Ionic Bonding & Ionic Compounds Metallic Bonding Molecular Geometry Chapter 6 Section 5 Molecular Geometry pages 197-207

  2. Chapter Vocabulary VSEPR theory Hybridization Hybrid orbitals Dipole Hydrogen bonding London dispersion forces Chapter 6 Section 5 Molecular Geometry pages 197-207

  3. Section 5 Molecular Geometry Chapter 6 Section 5 Molecular Geometry pages 197-207

  4. VSEPR Theory • Valence-Shell Electron-Pair Repulsion • Repulsions between the set of valence-level electrons surrounding an atom causes these sets to be oriented as far apart as possible. Chapter 6 Section 5 Molecular Geometry pages 197-207

  5. VSPRE & Molecular Geometry p. xx Chapter 6 Section 5 Molecular Geometry pages 197-207

  6. Geometry & Lone Pairs Chapter 6 Section 5 Molecular Geometry pages 197-207

  7. Molecular Geometry LINEAR Example formula: BeF2 Type of molecule: AB2 Bond angle: 180° Shared pairs on the central atom: 2 Unshared pairs on the central atom: 0 : : :F - Be - F: : : Chapter 6 Section 5 Molecular Geometry pages 197-207

  8. : F: : : :F : Molecular Geometry TRIGONAL PLANAR Example formula: BF3 Type of molecule: AB3 Bond angle: 120° Shared pairs on the central atom: 3 Unshared pairs on the central atom: 0 B :F: : Chapter 6 Section 5 Molecular Geometry pages 197-207

  9. Molecular Geometry H TETRAHEDRAL Example formula: CH4 Type of molecule: AB4 Bond angle: 109.5° Shared pairs on the central atom: 4 Unshared pairs on the central atom: 0 C H H H Chapter 6 Section 5 Molecular Geometry pages 197-207

  10. Molecular Geometry : O : ANGULAR Example formula: H2O Type of molecule: AB2E2 Bond angle: 105° Shared pairs on the central atom: 2 Unshared pairs on the central atom: 2 H H Chapter 6 Section 5 Molecular Geometry pages 197-207

  11. Molecular Geometry : N TRIGONAL PYRAMIDAL Example formula: NH3 Type of molecule: AB3E Bond angle: 107° Shared pairs on the central atom: 3 Unshared pairs on the central atom: 1 H H H Chapter 6 Section 5 Molecular Geometry pages 197-207

  12. Molecular Geometry • Unshared pairs occupies more space around the central atom than shared pairs • Unshared pairs repel other electrons more strongly than shared pairs • Multiple bonds are treated the same as single bonds • Polyatomic ions are treated like molecules. Chapter 6 Section 5 Molecular Geometry pages 197-207

  13. Molecular Geometry • Try • CO2 • ClO31- • Practice Problems page 201 • Try • CF4 • NO3 1- Chapter 6 Section 5 Molecular Geometry pages 197-207

  14. Hybridization • The mixing of two or more atomic orbitals of similar energies on the same atom to produce new hybrid atomic orbitals of equal energy • Example CH4 C = ____ 1s 2s 2p ____ 1s sp3 Chapter 6 Section 5 Molecular Geometry pages 197-207

  15. Hybridization • s and p orbitals have different shapes • The 2s & 2p hybridize to make four identical orbitals • named sp3 • The 3 is from the three p orbitals used • But the 1 is not written for the s Chapter 6 Section 5 Molecular Geometry pages 197-207

  16. Hybridization • All sp3 orbitals have the same energy • Higher than 2s but • Lower than 2p • Hybrid orbitals – orbitals of equal energy produced by the combination of two or more orbitals. Chapter 6 Section 5 Molecular Geometry pages 197-207

  17. Hybridization N = ___ 1s 2s 2p ___ 1s sp3 O = __ 1s 2s 2p __ 1s sp3 Chapter 6 Section 5 Molecular Geometry pages 197-207

  18. Uses one p orbital Uses two p orbitals Hybridization Be =  1s 2s ____ 1s sp B = _____ 1s 2s 2p _____ 1s sp2 Chapter 6 Section 5 Molecular Geometry pages 197-207

  19. Hybridization p. xx Chapter 6 Section 5 Molecular Geometry pages 197-207

  20. Hybrid Orbital Animation p. xx Chapter 6 Section 5 Molecular Geometry pages 197-207

  21. Comparing Molecular & Ionic Compounds p. xx Chapter 6 Section 5 Molecular Geometry pages 197-207

  22. Molecule Polarity δ+ δ- • Dipole: created by equal but opposite charges that are separated by a short distance H - Cl 2.1 3.0 Lower EN Higher EN polar bond = dipole Chapter 6 Section 5 Molecular Geometry pages 197-207

  23. Molecule Polarity • Molecule polarity for compounds with more than one bond depends on … bond polarityand molecule geometry. Chapter 6 Section 5 Molecular Geometry pages 197-207

  24. : N H H H Molecule Polarity • Draw the Lewis Structure true to shape. Example NH3 Chapter 6 Section 5 Molecular Geometry pages 197-207

  25. Molecule Polarity • Find all the partial positive and negatives for each atom in the molecule δ- 3.0 : N 2.1 H H H δ+ δ+ δ+ Look at each bond. High EN = δ- Low EN = δ+ Chapter 6 Section 5 Molecular Geometry pages 197-207

  26. Molecule Polarity • Look at around the “outside” of the molecule. δ- : N H H H δ+ δ+ δ+ • All the same δ = NP; Different δ = P Chapter 6 Section 5 Molecular Geometry pages 197-207

  27. H C H H H Molecule Polarity • Draw the Lewis Structure true to shape. Example CH4 Chapter 6 Section 5 Molecular Geometry pages 197-207

  28. H C H H H Molecule Polarity • Find all the partial positive and negatives for each atom in the molecule δ+ 2.1 2.5 δ- 2.1 δ+ δ+ 2.1 2.1 δ+ High EN = δ- Low EN = δ+ Look at each bond. Chapter 6 Section 5 Molecular Geometry pages 197-207

  29. H C H H H Molecule Polarity • Look at around the “outside” of the molecule. δ+ δ- δ+ δ+ δ+ • All the same δ = NP; Different δ = P • Carbon is not on the “outside”. Chapter 6 Section 5 Molecular Geometry pages 197-207

  30. Intermolecular Forces • The force of attraction between molecules to make (solids or) liquids • Boiling point is a good measure of the strength of intermolecular forces • Weaker than covalent bonds, ionic bonds and metallic bonds Chapter 6 Section 5 Molecular Geometry pages 197-207

  31. δ+ δ+ δ- δ- H - Cl H - Cl Molecule Polarity Dipole-dipole force: the force of attraction between polar molecules Chapter 6 Section 5 Molecular Geometry pages 197-207

  32. Dipole Dipole Animation p. xx Chapter 6 Section 5 Molecular Geometry pages 197-207

  33. Comparing Dipole Dipole Forces p. xx Chapter 6 Section 5 Molecular Geometry pages 197-207

  34. Hydrogen Bonding • H-F, H-O or H-N bonds have a large electronegativity difference • These bonds are very polar. • Molecules with these bonds have very strong dipole-dipole forces Chapter 6 Section 5 Molecular Geometry pages 197-207

  35. Hydrogen Bonding p. xx Chapter 6 Section 5 Molecular Geometry pages 197-207

  36. Hydrogen Bonding • The intermolecular force in which a Hydrogen atom that is bonded toNitrogen or Oxygen or Fluorineis attracted to an unshared pair of electronsof the N, O or F of another molecule Chapter 6 Section 5 Molecular Geometry pages 197-207

  37. Hydrogen Bonding • Compare PH3 & NH3H2O & H2S Page 204 Chapter 6 Section 5 Molecular Geometry pages 197-207

  38. Dipole Induced Dipole p. xx Chapter 6 Section 5 Molecular Geometry pages 197-207

  39. Induced Dipole • Polar molecules cause a dipole in a nonpolar molecule H δ+ δ+ δ- : : : O O O δ- : : : H δ+ Chapter 6 Section 5 Molecular Geometry pages 197-207

  40. London Dispersion Forces • Nonpolar molecules don’t have dipoles • However at any instance the electron distribution may be uneven. • An instantaneous dipole can occur and induce dipoles in other molecules Chapter 6 Section 5 Molecular Geometry pages 197-207

  41. London Dispersion Force p. xx Chapter 6 Section 5 Molecular Geometry pages 197-207

  42. London Dispersion Forces • London dispersion forces – the intermolecular attraction resulting from the constant motion of electrons and the creation of instantaneous dipoles • Very weak intermolecular forces • London forces increase with increasing atomic or molar mass. Chapter 6 Section 5 Molecular Geometry pages 197-207

  43. Lewis Structures Practice • C2H4 • BeF2 • AsH3 • IBr • CHCl3 • CN 1- • N2O2 Chapter 6 Section 5 Molecular Geometry pages 197-207

  44. Lewis Structures Practice • C2Cl4 • SCl2 • AsF5 • CI2Cl2 • BF3 • NO 1- • CH2O • IO31- Chapter 6 Section 5 Molecular Geometry pages 197-207

  45. Section 5 Homework Chapter 6 Section 5 Worksheet Chapter 6 Section 5 Molecular Geometry pages 197-207

More Related