1 / 37

MA 242.003

MA 242.003 . Day 41 – March 12, 2013 Section 12.5: Applications of Double Integration. Section 12.5: Applications of Double Integration. 1. Volume under z = f(x,y ) and above D in the xy -plane. Section 12.5: Applications of Double Integration.

banyan
Télécharger la présentation

MA 242.003

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MA 242.003 • Day 41 – March 12, 2013 • Section 12.5: Applications of Double Integration

  2. Section 12.5: Applications of Double Integration 1. Volume under z = f(x,y) and above D in the xy-plane

  3. Section 12.5: Applications of Double Integration 1. Volume under z = f(x,y) and above D in the xy-plane 2. Average value of f(x,y) on a region D in the xy-plane

  4. Section 12.5: Applications of Double Integration 1. Volume under z = f(x,y) and above D in the xy-plane 2. Average value of f(x,y) on a region D in the xy-plane 3. Area of the plane region D

  5. Section 12.5: Applications of Double Integration 1. Volume under z = f(x,y) and above D in the xy-plane 2. Average value of f(x,y) on a region D in the xy-plane 3. Area of the plane region D 4. Density

  6. Section 12.5: Applications of Double Integration 1. Volume under z = f(x,y) and above D in the xy-plane 2. Average value of f(x,y) on a region D in the xy-plane 3. Area of the plane region D 4. Density 5. Many more applications discussed by your textbook

  7. Section 12.5: Applications of Double Integration 1. Volume under z = f(x,y) and above D in the xy-plane 2. Average value of f(x,y) on a region D in the xy-plane 3. Area of the plane region D 4. Density 5. Many more applications discussed by your textbook, All of which are specialized double integrals.

  8. 4. Density A Plane Lamina

  9. 4. Density A Plane Lamina (a very thin object)

  10. 4. Density If the lamina is uniform then its density is constant A Plane Lamina (a very thin object)

  11. 4. Density If the lamina is uniform then its density is constant A Plane Lamina If the lamina is non-uniform then its density is non-constant

  12. 4. Density If the lamina is uniform then its density is constant A Plane Lamina If the lamina is non-uniform then its density is non-constant On a test the density will be GIVEN – you have to set up the double integral for the mass.

  13. 4. Density Definition: The total mass of a plane lamina with mass density that occupies a region D in the xy-plane is A Plane Lamina

  14. A remark on units 1. Mass density has units: MASS/(UNIT AREA)

  15. A remark on units 1. Mass density has units: MASS/(UNIT AREA) 2. Electric charge density has units: COUL0MBS/(UNIT AREA)

  16. A remark on units 1. Mass density has units: MASS/(UNIT AREA) 2. Electric charge density has units: COUL0MBS/(UNIT AREA) The double integral of charge density gives the total charge in the region D

  17. A remark on units 1. Mass density has units: MASS/(UNIT AREA) 2. Electric charge density has units: COUL0MBS/(UNIT AREA) The double integral of charge density gives the total charge in the region D

  18. Remark on remaining Applications in section 12.5:

  19. Remark on remaining Applications in section 12.5: For ANY OTHER application that I might ask you about on a test, I will PROVIDE you with the Double Integral formula for that applicaition.

  20. Remark on remaining Applications in section 12.5: For ANY OTHER application that I might ask you about on a test, I will PROVIDE you with the Double Integral formula for that applicaition. Your job will be to set up the double integrals as iterated integrals!

  21. Remark on remaining Applications in section 12.5: For ANY OTHER application that I might ask you about on a test, I will PROVIDE you with the Double Integral formula for that applicaition. Your job will be to set up the double integrals as iterated integrals! Let’s now have a brief look at some of the other applications

  22. You’ll notice that all the applications are simply double integrals of functions over plane regions!

More Related