1 / 7

. Integral Parsial Jika u dan v merupakan fungsi dapat diturunkan terhadap x maka

. Integral Parsial Jika u dan v merupakan fungsi dapat diturunkan terhadap x maka .d( uv ) = u dv +v du .u dv = d( uv ) – v du Integral dengan bentuk ini disebut integral parsial . Contoh :

beate
Télécharger la présentation

. Integral Parsial Jika u dan v merupakan fungsi dapat diturunkan terhadap x maka

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. . Integral Parsial Jika u dan v merupakanfungsidapatditurunkanterhadap x maka .d(uv) = u dv +v du .u dv = d(uv) – v du Integral denganbentukinidisebut integral parsial. Contoh: 1 `. u = ln x dan du = dx .du = 1/x dx , v = 1/2 x2 = ½ x2ln x – (1/2)(1/2 x2) = ½ x2ln x – ¼ x2 + C

  2. . u = x dandv = sin x dx Jawab: du = dx , v = - cos x = - x cosx + sin x + C u = x2dandv = exdx du = 2x dxdan v = ex = x2 ex - 2x ex + 2 = x2 ex - 2x ex + 2 ex + C//

  3. RumusReduksi di Integral : Integral DenganSubstitusiTrigoniometri Suatubentukintegran yang terdiridarisalahsatubentuk, atautetapibukanfaktorirasional lain makadapatdigunakansubstitusitrigoniometrisebagaiberikut :

  4. 1.Untukgunakan x= a sin u untukmemperoleh=a cosu 2.Untukgunakan x= a tg u untukmemperoleh=a sec u 3.Untukgunakan x= a sec u untukmemperoleh=a tg u Untuktiapbentukintegrasimenghasilkanpernyataandalamvariabel u. Contoh: jawab Misalx= 2 sin u maka= 2 cos u dx = 2 cos u du == 4= 4{1/2 cos u sin u + ½ u} = 2 cos u sin u + 2 arc sin x/2 + C = . (x/2) + 2 arc sin x/2 + C

  5. . = -½ { 2/3 U3/2 } + C =-1/3 (4-x2)3/2 +C

  6. = 1/3 sec2x tgx– 4/3 tgx +x +C/// = - 1/3cosec2ctg x -2/3ctg x + C TUGAS Hitung integral fungsidibawahini :

  7. .

More Related