1 / 27

ISQA 459/559 Advanced Forecasting

ISQA 459/559 Advanced Forecasting. Mellie Pullman. Recall Forecast Error Measurements. MFE: mean forecast error MAD: mean absolute deviation. 30. Best Error Measurement (What it the problem with the MAD calculation as an error measurement for long histories?). 365 days Averaged ?.

becca
Télécharger la présentation

ISQA 459/559 Advanced Forecasting

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ISQA 459/559Advanced Forecasting Mellie Pullman

  2. Recall Forecast ErrorMeasurements • MFE: mean forecast error • MAD: mean absolute deviation 30

  3. Best Error Measurement(What it the problem with the MAD calculation as an error measurement for long histories?) 365 days Averaged ?

  4. Solution? • Smoothed MAD • Phi (j) is a smoothing parameter, which is set in advance. • It is important that we fix (set) phi BEFORE we try to find the best forecasting method. Why?

  5. Phi • Phi controls the period of time over which we are evaluating forecast accuracy--the smaller the value of phi, the larger the number of historical periods that are considered in the measurement of the "average" forecast error. • What effect would changing phi have while you are trying to compare the accuracy of two different forecasting methods?

  6. Suggested Values for Phi

  7. Quarter Year 1 Year 2 Year 3 Year 4 1 45 70 100 100 2 335 370 585 725 3 520 590 830 1160 4 100 170 285 215 Total 1000 1200 1800 2200 Average 250 300 450 550 Seasonal Index/Factor We estimate 2600 for Year 5 but need to know how many to make each quarter.

  8. Seasonal Factor Method

  9. Quarter Year 1 Year 2 Year 3 Year 4 1 45/250 = 0.18 70 100 100 2 335 370 585 725 3 520 590 830 1160 4 100 170 285 215 Total 1000 1200 1800 2200 Average 250 300 450 550 45 250 Seasonal Index = = 0.18 Seasonal Index/Factor

  10. Quarter Year 1 Year 2 Year 3 Year 4 1 45/250 = 0.18 70/300 = 0.23 100/450 = 0.22 100/550 = 0.18 2 335/250 = 1.34 370/300 = 1.23 585/450 = 1.30 725/550 = 1.32 3 520/250 = 2.08 590/300 = 1.97 830/450 = 1.84 1160/550 = 2.11 4 100/250 = 0.40 170/300 = 0.57 285/450 = 0.63 215/550 = 0.39 Quarter Average Seasonal Index 1 (0.18 + 0.23 + 0.22 + 0.18)/4 = 0.20 2 (1.34 + 1.23 + 1.30 + 1.32)/4 = 1.30 3 (2.08 + 1.97 + 1.84 + 2.11)/4 = 2.00 4 (0.40 + 0.57 + 0.63 + 0.39)/4 = 0.50 Seasonal Index/Factor

  11. Quarter Year 1 Year 2 Year 3 Year 4 1 45/250 = 0.18 70/300 = 0.23 100/450 = 0.22 100/550 = 0.18 2 335/250 = 1.34 370/300 = 1.23 585/450 = 1.30 725/550 = 1.32 3 520/250 = 2.08 590/300 = 1.97 830/450 = 1.84 1160/550 = 2.11 4 100/250 = 0.40 170/300 = 0.57 285/450 = 0.63 215/550 = 0.39 Quarter Average Seasonal Index Forecast 1 (0.18 + 0.23 + 0.22 + 0.18)/4 = 0.20 650(0.20) = 130 2 (1.34 + 1.23 + 1.30 + 1.32)/4 = 1.30 650(1.30) = 845 3 (2.08 + 1.97 + 1.84 + 2.11)/4 = 2.00 650(2.00) = 1300 4 (0.40 + 0.57 + 0.63 + 0.39)/4 = 0.50 650(0.50) = 325 Seasonal Influences

  12. In- Class Problem: Forecast Year 3(Overall forecast = 1500)

  13. Decomposition of Season & Trend • Decompose the data into components • Find seasonal component • Deseasonalize demand • Find Trend component • Forecast future values of each component • Project Trend component into future • Multiply trend component by seasonal component

  14. Example of Deseasonalized Data

  15. Project Future and Re-seasonalize

  16. Using Yearly Data to start? Using Monthly data to start? Options for Brewery Case that use regression and/or seasonal adjustment?

  17. 80 — 70 — 60 — 50 — 40 — 30 — Guest arrivals | | | | | | | | | | | | | | | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Week Trend-Adjusted Exponential Smoothing Actual room requests

  18. Trend-Adjusted Exponential Smoothing

  19. 80 — 70 — 60 — 50 — 40 — 30 — Guest Arrivals At = Dt + (1 - )(At-1 + Tt-1) Tt = (At - At-1) + (1 - )Tt-1 Guest arrivals | | | | | | | | | | | | | | | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Week Trend-Adjusted Exponential Smoothing

  20. 80 — 70 — 60 — 50 — 40 — 30 — Guest Arrivals At = Dt + (1 - )(At-1 + Tt-1) Tt = (At - At-1) + (1 - )Tt-1 Guest arrivals A0 = 28 g D1 = 27 g T0 = 3 g  = 0.20  = 0.20 A1 = 0.2(27) + 0.80(28 + 3)= 30.2 T1 = 0.2(30.2 - 28) + 0.80(3)= 2.8 | | | | | | | | | | | | | | | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Week Trend-Adjusted Exponential Smoothing

  21. 80 — 70 — 60 — 50 — 40 — 30 — Guest Arrivals At = Dt + (1 - )(At-1 + Tt-1) Tt = (At - At-1) + (1 - )Tt-1 Guest arrivals A0 = 28 guests T0 = 3 guests  = 0.20  = 0.20 A1 = 30.2 T1 = 2.8 Forecast2 = 30.2 + 2.8 = 33 | | | | | | | | | | | | | | | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Week Trend-Adjusted Exponential Smoothing

  22. 80 — 70 — 60 — 50 — 40 — 30 — Guest Arrivals At = Dt + (1 - )(At-1 + Tt-1) Tt = (At - At-1) + (1 - )Tt-1 Guest arrivals A1= 30.2 D2 = 44 T1 = 2.8  = 0.20  = 0.20 A2 = T2 = Forecast = | | | | | | | | | | | | | | | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Week Trend-Adjusted Exponential Smoothing

  23. 80 — 70 — 60 — 50 — 40 — 30 — Guest Arrivals At = Dt + (1 - )(At-1 + Tt-1) Tt = (At - At-1) + (1 - )Tt-1 Guest arrivals A1= 30.2 D2 = 44 T1 = 2.8  = 0.20  = 0.20 A2 = 35.2 T2 = 3.2 Forecast = 35.2 + 3.2 = 38.4 | | | | | | | | | | | | | | | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Week Trend-Adjusted Exponential Smoothing

  24. 80 — 70 — 60 — 50 — 40 — 30 — Guest arrivals | | | | | | | | | | | | | | | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Week Trend-Adjusted Exponential Smoothing Trend-adjusted forecast Actual guest arrivals

  25. In Class Exercise • Amar = 300,000 cases; Tmar = +8,000 cases Dapr = 330,000 cases; a= 0.20 b=.10 • What are the forecasts for May and July?

  26. The End

More Related