1 / 53

Computers for the Post-PC Era

Computers for the Post-PC Era. David Patterson, Katherine Yelick University of California at Berkeley Patterson@cs.berkeley.edu UC Berkeley IRAM Group UC Berkeley ISTORE Group istore-group@cs.berkeley.edu February 2000. Perspective on Post-PC Era.

benm
Télécharger la présentation

Computers for the Post-PC Era

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Computers for the Post-PC Era David Patterson, Katherine Yelick University of California at Berkeley Patterson@cs.berkeley.edu UC Berkeley IRAM Group UC Berkeley ISTORE Group istore-group@cs.berkeley.edu February 2000

  2. Perspective on Post-PC Era • PostPC Era will be driven by 2 technologies: 1) “Gadgets”:Tiny Embedded or Mobile Devices • ubiquitous: in everything • e.g., successor to PDA, cell phone, wearable computers 2) Infrastructure to Support such Devices • e.g., successor to Big Fat Web Servers, Database Servers

  3. Outline 1) Example microprocessor for PostPC gadgets 2) Motivation and the ISTORE project vision • AME: Availability, Maintainability, Evolutionary growth • ISTORE’s research principles • Proposed techniques for achieving AME • Benchmarks for AME • Conclusions and future work

  4. L o g i c f a b Proc $ $ L2$ Bus Bus D R A M I/O I/O I/O I/O Proc f a b D R A M Bus D R A M Intelligent RAM: IRAM Microprocessor & DRAM on a single chip: • 10X capacity vs. SRAM • on-chip memory latency 5-10X, bandwidth 50-100X • improve energy efficiency 2X-4X (no off-chip bus) • serial I/O 5-10X v. buses • smaller board area/volume IRAM advantages extend to: • a single chip system • a building block for larger systems

  5. New Architecture Directions • “…media processing will become the dominant force in computer arch. and microprocessor design.” • “...new media-rich applications ... involve significant real-time processing of continuous media streams, and make heavy use of vectors of packed 8-, 16-, 32-bit integer and Fl. Pt.” • Needs include real-time response, continuous media data types (no temporal locality), fine grain parallelism, coarse grain parallelism, memory bandwidth • “How Multimedia Workloads Will Change Processor Design”, Diefendorff & Dubey, IEEEComputer (9/97)

  6. Cost: $1M each? Low latency, high BW memory system? Code density? Compilers? Performance? Power/Energy? Limited to scientific applications? Single-chip CMOS MPU/IRAM IRAM Much smaller than VLIW For sale, mature (>20 years)(We retarget Cray compilers) Easy scale speed with technology Parallel to save energy, keep performance Multimedia apps vectorizable too: N*64b, 2N*32b, 4N*16b Revive Vector Architecture

  7. I/O I/O I/O I/O V-IRAM1: Low Power v. High Perf. 4 x 64 or 8 x 32 or 16 x 16 + x 2-way Superscalar Vector Instruction ÷ Processor Queue Load/Store Vector Registers 16K I cache 16K D cache 4 x 64 4 x 64 Serial I/O Memory Crossbar Switch M M M M M M M M M M … M M M M M M M M M M 4 x 64 4 x 64 4 x 64 4 x 64 4 x 64 … … … … … … … … … … M M M M M M M M M M

  8. C P U+$ 4 Vector Pipes/Lanes VIRAM-1: System on a Chip • Prototype scheduled for tape-out mid 2001 • 0.18 um EDL process • 16 MB DRAM, 8 banks • MIPS Scalar core and caches @ 200 MHz • 4 64-bit vector unit pipelines @ 200 MHz • 4 100 MB parallel I/O lines • 17x17 mm, 2 Watts • 25.6 GB/s memory (6.4 GB/s per direction and per Xbar) • 1.6 Gflops (64-bit), 6.4 GOPs (16-bit) Memory(64 Mbits / 8 MBytes) Xbar I/O Memory(64 Mbits / 8 MBytes)

  9. Media Kernel Performance

  10. IRAM Chip Challenges • Merged Logic-DRAM process Cost: Cost of wafer, Impact on yield, testing cost of logic and DRAM • Price: on-chip DRAM v. separate DRAM chips? • Delay in transistor speeds, memory cell sizes in Merged process vs. Logic only or DRAM only • DRAM block: flexibility via DRAM “compiler” (vary size, width, no. subbanks) vs. fixed block • Apps: advantages in memory bandwidth, energy, system size to offset challenges?

  11. Other examples: IBM “Blue Gene” • 1 PetaFLOPS in 2003 for $100M? • Application: Protein Folding • Blue Gene Chip • 25-32 Multithreaded RISC processors + 0.5MB Embedded DRAM / processor + high speed Network Interface on 20 x 20 mm chip • 1 GFLOPS / processor • 2’ x 2’ Board = 64 chips (1.6K-2K CPUs) • Rack = 8 Boards (512 chips,13K-16K CPUs) • System = 64-80 Racks (512 boards,32-40Kchips) • Total 1 million processors, 1 MW in just 2000 sq. ft. • Since single app, unbalanced system to save money • Traditional ratios: 1 MIPS, 1 MB, 1 Mbit/s I/O • Blue Gene ratios: 1 MIPS, 0.005 MB, 0.2 Mbit/s I/O

  12. Other examples: Sony Playstation 2 • Emotion Engine: 6.2 GFLOPS, 75 million polygons per second (Microprocessor Report, 13:5) • Superscalar MIPS core + vector coprocessor + graphics/DRAM • Claim: “Toy Story” realism brought to games

  13. Outline 1) Example microprocessor for PostPC gadgets 2) Motivation and the ISTORE project vision • AME: Availability, Maintainability, Evolutionary growth • ISTORE’s research principles • Proposed techniques for achieving AME • Benchmarks for AME • Conclusions and future work

  14. The problem space: big data • Big demand for enormous amounts of data • today: high-end enterprise and Internet applications • enterprise decision-support, data mining databases • online applications: e-commerce, mail, web, archives • future: infrastructure services, richer data • computational & storage back-ends for mobile devices • more multimedia content • more use of historical data to provide better services • Today’s SMP server designs can’t easily scale • Bigger scaling problems than performance!

  15. Lampson: Systems Challenges • Systems that work • Meeting their specs • Always available • Adapting to changing environment • Evolving while they run • Made from unreliable components • Growing without practical limit • Credible simulations or analysis • Writing good specs • Testing • Performance • Understanding when it doesn’t matter “Computer Systems Research-Past and Future” Keynote address, 17th SOSP, Dec. 1999 Butler Lampson Microsoft

  16. Hennessy: What Should the “New World” Focus Be? • Availability • Both appliance & service • Maintainability • Two functions: • Enhancing availability by preventing failure • Ease of SW and HW upgrades • Scalability • Especially of service • Cost • per device and per service transaction • Performance • Remains important, but its not SPECint “Back to the Future: Time to Return to Longstanding Problems in Computer Systems?” Keynote address, FCRC, May 1999 John Hennessy Stanford

  17. ISTORE as Storage System of the Future • Availability, Maintainability, and Evolutionary growth key challenges for storage systems • Maintenance Cost = 10X to 100X Purchase Cost, so even 2X purchase cost for 1/2 maintenance cost wins • AME improvement enables even larger systems • ISTORE has cost-performance advantages • Better space, power/cooling costs ($@colocation site) • More MIPS, cheaper MIPS, no bus bottlenecks • Compression reduces network $, encryption protects • Single interconnect, supports evolution of technology • Match to future software storage services • Future storage service software target clusters

  18. Is Maintenance the Key? • Rule of Thumb: Maintenance 10X to 100X HW • VAX crashes ‘85, ‘93 [Murp95]; extrap. to ‘01 • Sys. Man.: N crashes/problem, SysAdmin actions • Actions: set params bad, bad config, bad app install • HW/OS 70% in ‘85 to 28% in ‘93. In ‘01, 10%?

  19. Disk Half-height canister ISTORE-1 hardware platform • 80-node x86-based cluster, 1.4TB storage • cluster nodes are plug-and-play, intelligent, network-attached storage “bricks” • a single field-replaceable unit to simplify maintenance • each node is a full x86 PC w/256MB DRAM, 18GB disk • more CPU than NAS; fewer disks/node than cluster Intelligent Disk “Brick” Portable PC CPU: Pentium II/266 + DRAM Redundant NICs (4 100 Mb/s links) Diagnostic Processor • ISTORE Chassis • 80 nodes, 8 per tray • 2 levels of switches • 20 100 Mbit/s • 2 1 Gbit/s • Environment Monitoring: • UPS, redundant PS, • fans, heat and vibration sensors...

  20. ISTORE-1 Brick • Webster’s Dictionary: “brick: a handy-sized unit of building or paving material typically being rectangular and about 2 1/4 x 3 3/4 x 8 inches” • ISTORE-1 Brick: 2 x 4 x 11 inches (1.3x) • Single physical form factor, fixed cooling required, compatible network interface to simplify physical maintenance, scaling over time • Contents should evolve over time: contains most cost effective MPU, DRAM, disk, compatible NI • If useful, could have special bricks (e.g., DRAM rich) • Suggests network that will last, evolve: Ethernet

  21. A glimpse into the future? • System-on-a-chip enables computer, memory, redundant network interfaces without significantly increasing size of disk • ISTORE HW in 5-7 years: • 2006 brick: System On a Chip integrated with MicroDrive • 9GB disk, 50 MB/sec from disk • connected via crossbar switch • If low power, 10,000 nodes fit into one rack! • O(10,000) scale is our ultimate design point

  22. IStore-2Deltas from IStore-1 • Upgraded Storage Brick • Pentium III 650 MHz Processor • Two Gb Ethernet Copper Ports/brick • One 2.5" ATA disk(32 GB, 5400 RPM) • 2X DRAM memory • Geographically Disperse Nodes, Larger System • O(1000) nodes at Almaden, O(1000) at Berkeley • Halve into O(500) nodes at each site to simplify finding space problem, show that it works? • User Supplied UPS Support

  23. ISTORE-2 Improvements (1): Operator Aids • Every Field Replaceable Unit (FRU) has a machine readable unique identifier (UID) => introspective software determines if storage system is wired properly initially, evolved properly • Can a switch failure disconnect both copies of data? • Can a power supply failure disable mirrored disks? • Computer checks for wiring errors, informs operator vs. management blaming operator upon failure • Leverage IBM Vital Product Data (VPD) technology? • External Status Lights per Brick • Disk active, Ethernet port active, Redundant HW active, HW failure, Software hickup, ...

  24. ISTORE-2 Improvements (2): RAIN • ISTORE-1 switches 1/3 of space, power, cost, and for just 80 nodes! • Redundant Array of Inexpensive Disks (RAID): replace large, expensive disks by many small, inexpensive disks, saving volume, power, cost • Redundant Array of Inexpensive Network switches: replace large, expensive switches by many small, inexpensive switches, saving volume, power, cost? • ISTORE-1: Replace 2 16-port 1-Gbit switches by fat tree of 8 8-port switches, or 24 4-port switches?

  25. ISTORE-2 Improvements (3): System Management Language • Define high-level, intuitive, non-abstract system management language • Goal: Large Systems managed by part-time operators! • Language interpretive for observation, but compiled, error-checked for config. changes • Examples of tasks which should be made easy • Set alarm if any disk is more than 70% full • Backup all data in the Philippines site to Colorado site • Split system into protected subregions • Discover & display present routing topology • Show correlation between brick temps and crashes

  26. ISTORE-2 Improvements (4): Options to Investigate • TCP/IP Hardware Accelerator • Class 4: Hardware State Machine • ~10 microsecond latency, full Gbit bandwidth yet full TCP/IP functionality, TCP/IP APIs • Ethernet Sourced in Memory Controller (North Bridge) • Shelf of bricks on researchers’ desktops? • SCSI over TCP Support • Integrated UPS

  27. Why is ISTORE-2 a big machine? • ISTORE is all about managing truly large systems - one needs a large system to discover the real issues and opportunities • target 1k nodes in UCB CS, 1k nodes in IBM ARC • Large systems attract real applications • Without real applications CS research runs open-loop • The geographical separation of ISTORE-2 sub-clusters exposes many important issues • the network is NOT transparent • networked systems fail differently, often insidiously

  28. Advantages: Cost of Bandwidth Cost of Space Cost of Storage System v. Cost of Disks Physical Repair, Number of Spare Parts Cost of Processor Complexity Cluster advantages: dependability, scalability 1 v. 2 Networks A Case for Intelligent Storage

  29. Cost of Space, Power, Bandwidth • Co-location sites (e.g., Exodus) offer space, expandable bandwidth, stable power • Charge ~$1000/month per rack ( ~ 10 sq. ft.) • Includes 1 20-amp circuit/rack; charges ~$100/month per extra 20-amp circuit/rack • Bandwidth cost: ~$500 per Mbit/sec/Month

  30. Cost of Bandwidth, Safety • Network bandwidth cost is significant • 1000 Mbit/sec/month => $6,000,000/year • Security will increase in importance for storage service providers => Storage systems of future need greater computing ability • Compress to reduce cost of network bandwidth 3X; save $4M/year? • Encrypt to protect information in transit for B2B => Increasing processing/disk for future storage apps

  31. Cost of Space, Power • Sun Enterprise server/array (64CPUs/60disks) • 10K Server (64 CPUs): 70 x 50 x 39 in. • A3500 Array (60 disks): 74 x 24 x 36 in. • 2 Symmetra UPS (11KW): 2 * 52 x 24 x 27 in. • ISTORE-1: 2X savings in space • ISTORE-1: 1 rack (big) switches, 1 rack (old) UPSs, 1 rack for 80 CPUs/disks (3/8 VME rack unit/brick) • ISTORE-2: 8X-16X space? • Space, power cost/year for 1000 disks: Sun $924k, ISTORE-1 $484k, ISTORE2 $50k

  32. Cost of Storage System v. Disks • Examples show cost of way we build current systems (2 networks, many buses, CPU, …) Disks Disks Date Cost Main. Disks /CPU /IObus • NCR WM: 10/97 $8.3M -- 1312 10.2 5.0 • Sun 10k: 3/98 $5.2M -- 668 10.4 7.0 • Sun 10k: 9/99 $6.2M $2.1M 1732 27.0 12.0 • IBM Netinf: 7/00 $7.8M $1.8M 7040 55.0 9.0 =>Too complicated, too heterogenous • And Data Bases are often CPU or bus bound! • ISTORE disks per CPU: 1.0 • ISTORE disks per I/O bus: 1.0

  33. Disk Limit: Bus Hierarchy Server Storage Area Network Memory bus CPU • Data rate vs. Disk rate • SCSI: Ultra3 (80 MHz), Wide (16 bit): 160 MByte/s • FC-AL: 1 Gbit/s = 125 MByte/s • Use only 50% of a bus • Command overhead (~ 20%) • Queuing Theory (< 70%) (FC-AL) Internal I/O bus Memory RAID bus (PCI) Mem External I/O bus Disk Array (SCSI) (15 disks/bus)

  34. Physical Repair, Spare Parts • ISTORE: Compatible modules based on hot-pluggable interconnect (LAN) with few Field Replacable Units (FRUs): Node, Power Supplies, Switches, network cables • Replace node (disk, CPU, memory, NI) if any fail • Conventional: Heterogeneous system with many server modules (CPU, backplane, memory cards, …) and disk array modules (controllers, disks, array controllers, power supplies, … ) • Store all components available somewhere as FRUs • Sun Enterprise 10k has ~ 100 types of spare parts • Sun 3500 Array has ~ 12 types of spare parts

  35. ISTORE: Complexity v. Perf • Complexity increase: • HP PA-8500: issue 4 instructions per clock cycle, 56 instructions out-of-order execution, 4Kbit branch predictor, 9 stage pipeline, 512 KB I cache, 1024 KB D cache (> 80M transistors just in caches) • Intel SA-110: 16 KB I$, 16 KB D$, 1 instruction, in order execution, no branch prediction, 5 stage pipeline • Complexity costs in development time, development power, die size, cost • 550 MHz HP PA-8500 477 mm2, 0.25 micron/4M $330, 60 Watts • 233 MHz Intel SA-110 50 mm2, 0.35 micron/3M $18, 0.4 Watts

  36. ISTORE: Cluster Advantages • Architecture that tolerates partial failure • Automatic hardware redundancy • Transparent to application programs • Truly scalable architecture • Limits in size today are maintenance costs, floor space cost - generally NOT capital costs • As a result, it is THE target architecture for new software apps for Internet

  37. ISTORE: 1 vs. 2 networks • Current systems all have LAN + Disk interconnect (SCSI, FCAL) • LAN is improving fastest, most investment, most features • SCSI, FC-AL poor network features, improving slowly, relatively expensive for switches, bandwidth • FC-AL switches don’t interoperate • Two sets of cables, wiring? • Why not single network based on best HW/SW technology? • Note: there can be still 2 instances of the network (e.g. external, internal), but only one technology

  38. Initial Applications • ISTORE is not one super-system that demonstrates all these techniques! • Initially provide middleware, library to support AME • Initial application targets • information retrieval for multimedia data (XML storage?) • self-scrubbing data structures, structuring performance-robust distributed computation • Home video server via XML storage? • email service • self-scrubbing data structures, online self-testing • statistical identification of normal behavior

  39. UCB ISTORE Continued Funding • New NSF Information Technology Research, larger funding (>$500K/yr) • 1400 Letters • 920 Preproposals • 134 Full Proposals Encouraged • 240 Full Proposals Submitted • 60 Funded • We are 1 of the 60; starts Sept 2000

  40. NSF ITR Collaboration with Mills • Mills: small undergraduate liberal arts college for women; 8 miles south of Berkeley • Mills students can take 1 course/semester at Berkeley • Hourly shuttle between campuses • Mills also has re-entry MS program for older students • To increase women in Computer Science (especially African-American women): • Offer undergraduate research seminar at Mills • Mills Prof leads; Berkeley faculty, grad students help • Mills Prof goes to Berkeley for meetings, sabbatical • Goal: 2X-3X increase in Mills CS+alumnae to grad school • IBM people want to help?

  41. Conclusion: ISTORE as Storage System of the Future • Availability, Maintainability, and Evolutionary growth key challenges for storage systems • Cost of Maintenance = 10X Cost of Purchase, so even 2X purchase cost for 1/2 maintenance cost is good • AME improvement enables even larger systems • ISTORE has cost-performance advantages • Better space, power/cooling costs ($@colocation site) • More MIPS, cheaper MIPS, no bus bottlenecks • Compression reduces network $, encryption protects • Single interconnect, supports evolution of technology • Match to future software service architecture • Future storage service software target clusters

  42. Conclusions (1): ISTORE • Availability, Maintainability, and Evolutionary growth are key challenges for server systems • more important even than performance • ISTORE is investigating ways to bring AME to large-scale, storage-intensive servers • via clusters of network-attached, computationally-enhanced storage nodes running distributed code • via hardware and software introspection • we are currently performing application studies to investigate and compare techniques • Availability benchmarks a powerful tool? • revealed undocumented design decisions affecting SW RAID availability on Linux and Windows 2000

  43. Conclusions (2) • IRAM attractive for two Post-PC applications because of low power, small size, high memory bandwidth • Gadgets: Embedded/Mobile devices • Infrastructure: Intelligent Storage and Networks • PostPC infrastructure requires • New Goals: Availability, Maintainability, Evolution • New Principles: Introspection, Performance Robustness • New Techniques: Isolation/fault insertion, Software scrubbing • New Benchmarks: measure, compare AME metrics

  44. Berkeley Future work • IRAM: fab and test chip • ISTORE • implement AME-enhancing techniques in a variety of Internet, enterprise, and info retrieval applications • select the best techniques and integrate into a generic runtime system with “AME API” • add maintainability benchmarks • can we quantify administrative work needed to maintain a certain level of availability? • Perhaps look at data security via encryption? • Even consider denial of service?

  45. The UC Berkeley IRAM/ISTORE Projects:Computers for the PostPC Era For more information: http://iram.cs.berkeley.edu/istore istore-group@cs.berkeley.edu

  46. Backup Slides (mostly in the area of benchmarking)

  47. Case study • Software RAID-5 plus web server • Linux/Apache vs. Windows 2000/IIS • Why software RAID? • well-defined availability guarantees • RAID-5 volume should tolerate a single disk failure • reduced performance (degraded mode) after failure • may automatically rebuild redundancy onto spare disk • simple system • easy to inject storage faults • Why web server? • an application with measurable QoS metrics that depend on RAID availability and performance

  48. Benchmark environment: metrics • QoS metrics measured • hits per second • roughly tracks response time in our experiments • degree of fault tolerance in storage system • Workload generator and data collector • SpecWeb99 web benchmark • simulates realistic high-volume user load • mostly static read-only workload; some dynamic content • modified to run continuously and to measure average hits per second over each 2-minute interval

  49. Benchmark environment: faults • Focus on faults in the storage system (disks) • How do disks fail? • according to Tertiary Disk project, failures include: • recovered media errors • uncorrectable write failures • hardware errors (e.g., diagnostic failures) • SCSI timeouts • SCSI parity errors • note: no head crashes, no fail-stop failures

  50. Disk fault injection technique • To inject reproducible failures, we replaced one disk in the RAID with an emulated disk • a PC that appears as a disk on the SCSI bus • I/O requests processed in software, reflected to local disk • fault injection performed by altering SCSI command processing in the emulation software • Types of emulated faults: • media errors (transient, correctable, uncorrectable) • hardware errors (firmware, mechanical) • parity errors • power failures • disk hangs/timeouts

More Related