1 / 40

College Algebra Sixth Edition James Stewart  Lothar Redlin  Saleem Watson

College Algebra Sixth Edition James Stewart  Lothar Redlin  Saleem Watson. Prerequisites. P. Integer Exponents and Scientific Notation. P.3. Exponents. In this section, we review the rules for working with exponent notation.

berryman
Télécharger la présentation

College Algebra Sixth Edition James Stewart  Lothar Redlin  Saleem Watson

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. College Algebra Sixth Edition James StewartLothar RedlinSaleem Watson

  2. Prerequisites P

  3. Integer Exponentsand Scientific Notation P.3

  4. Exponents • In this section, we review the rules for working with exponent notation. • We also see how exponents can be used to represent very large and very small numbers.

  5. Exponential Notation

  6. Exponential Notation • A product of identical numbers is usually written in exponential notation. • For example, 5 · 5 · 5 is written as 53. • In general, we have the following definition.

  7. Exponential Notation • If a is any real number and n is a positive integer, then the nth power of a is: • an =a ·a ·· · ·· a • The number a is called the base, and n is called the exponent.

  8. E.g. 1—Exponential Notation

  9. Rules for Working with Exponential Notation • We can state several useful rules for working with exponential notation.

  10. Rule for Multiplication • To discover the rule for multiplication, we multiply 54 by 52: • It appears that, to multiply two powers of the same base, we add their exponents.

  11. Rule for Multiplication • In general, for any real number a and any positive integers m and n, we have: • Thus, aman =am+n.

  12. Rule for Multiplication • We would like this rule to be true even when m and n are 0 or negative integers. • For instance, we must have: 20· 23 = 20+3 = 23 • But this can happen only if 20 = 1.

  13. Rule for Multiplication • Likewise, we want to have: 54· 5–4 = 54+(–4) = 54–4 = 50 = 1 • This will be true if 5–4 = 1/54. • These observations lead to the following definition.

  14. Zero and Negative Exponents • If a ≠ 0 is any real number and n is a positive integer, then a0 = 1 and a–n = 1/an

  15. E.g. 2—Zero and Negative Exponents

  16. Rules for Working with Exponents

  17. Laws of Exponents • Familiarity with these rules is essential for our work with exponents and bases. • The bases a and b are real numbers. • The exponents m and n are integers.

  18. Law 3—Proof • If m and n are positive integers, we have: • The cases for which m ≤ 0 or n ≤ 0 can be proved using the definition of negative exponents.

  19. Law 4—Proof • If n is a positive integer, we have: • We have used the Commutative and Associative Properties repeatedly. • If n ≤ 0, Law 4 can be proved using the definition of negative exponents.

  20. E.g. 3—Using Laws of Exponents

  21. E.g. 3—Using Laws of Exponents

  22. E.g. 4—Simplifying Expressions with Exponents • Simplify:

  23. Example (a) E.g. 4—Simplifying

  24. Example (b) E.g. 4—Simplifying

  25. Simplifying Expressions with Negative Exponents • When simplifying an expression, you will find that many different methods will lead to the same result. • You should feel free to use any of the rules of exponents to arrive at your own method.

  26. E.g. 5—Simplifying Exprns. with Negative Exponents • Eliminate negative exponents and simplify each expression.

  27. Example (a) E.g. 5—Negative Exponents • We use Law 7, which allows us to move a number raised to a power from the numerator to the denominator (or vice versa) by changing the sign of the exponent:

  28. Example (b) E.g. 5—Negative Exponents • We use Law 6, which allows us to change the sign of the exponent of a fraction by inverting the fraction.

  29. Scientific Notation

  30. Scientific Notation • Exponential notation is used by scientists as a compact way of writing very large numbers and very small numbers. • For example, • The nearest star beyond the sun, Proxima Centauri, is approximately 40,000,000,000,000 km away. • The mass of a hydrogen atom is about 0.00000000000000000000000166 g.

  31. Scientific Notation • Such numbers are difficult to read and to write. • So, scientists usually express them in scientific notation.

  32. Scientific Notation • A positive number x is said to be written in scientific notation if it is expressed as follows: • x = a x 10n • where: • 1 ≤a< 10. • n is an integer.

  33. Scientific Notation • For instance, when we state that the distance to Proxima Centauri is 4 x 1013 km, the positive exponent 13 indicates that the decimal point should be moved 13 places to the right: • 4 x 1013 = 40,000,000,000,000

  34. Scientific Notation • When we state that the mass of a hydrogen atom is 1.66 x 10–24 g, the exponent –24 indicates that the decimal point should be moved 24 places to the left: 1.66 x 10–24 • =0.00000000000000000000000166

  35. E.g. 6—Changing from Decimal to Scientific Notation

  36. E.g. 7—Changing from Scientific Notation to Decimal

  37. Scientific Notation in Calculators • Scientific notation is often used on a calculator to display a very large or very small number. • Suppose we use a calculator to square the number 1,111,111.

  38. Scientific Notation in Calculators • The display panel may show (depending on the calculator model) the approximation 1.234568 12 or 1.23468 E12 • The final digits indicate the power of 10, and we interpret the result as 1.234568 x 1012.

  39. E.g. 8—Calculating with Scientific Notation • If a ≈ 0.00046b ≈ 1.697 x 1022 and c ≈ 2.91 x 10–18 use a calculator to approximate the quotient ab/c. • We could enter the data using scientific notation, or we could use laws of exponents as follows.

  40. E.g. 7—Calculating with Scientific Notation • We state the answer correct to two significant figures because the least accurate of the given numbers is stated to two significant figures.

More Related