1 / 21

Production of high intensity beams for the beta beams: status report

Production of high intensity beams for the beta beams: status report T.M. Mendonça 1 , R. Hodak 2 , M. Allibert 3 , V. Ghetta 3 , D. Heuer 3 , E. Noah 4 , T. Stora 1 1 CERN 2 Comenius University 3 LPSC Grenoble 4 ESS. 6 He production using BeO target at ISOLDE

Télécharger la présentation

Production of high intensity beams for the beta beams: status report

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.


Presentation Transcript

  1. Production of high intensity beams for the beta beams: status report T.M. Mendonça1, R. Hodak2, M. Allibert3, V. Ghetta3, D. Heuer3, E. Noah4, T. Stora1 1 CERN 2 ComeniusUniversity 3 LPSC Grenoble 4 ESS

  2. 6He productionusingBeOtargetat ISOLDE - Targetsynthesisandcharacterization - Online validationat ISOLDE 18Ne productionusingmoltensalts - Moltensaltssynthesisandcharacterization (collab. LPSC/Grenoble) - Preparationofthestatictargetunitand online tests (collab. ComeniusUniv., Slovakia) - Design of a circulating moltensaltsloop (collab. LPSC) 6He and 18Ne production for the Beta Beams SPL Linac4 RCS Molten Salt Loop ISOL target 6He 18Ne ECR RFQ 6He/18Ne Baseline

  3. Productionofradioactiveionbeamsbasedonthe ISOL technique Primarybeam (MeV/u-GeV/u) ISOL method: higherintensitiesandbetterbeamquality Leaks Neutrals Leaks Leaks Baseline ions: 6He (T1/2=0.8 s, Qβ-=3.5 MeV) and 18Ne (T1/2=1.67 s, Qβ- =3.3 MeV) Production of anti-νeandνe: 3(.3)x10136He/s and 2(.1)x101318Ne/s outoftheprimarytarget (Final report, FP6 EURISOL-DS)

  4. Production of 6He using beryllium oxide target Reaction:9Be(n,α)6He U. Köster et al., EURISOL-DS s9Be(n,a)6He EXFOR data Standard ISOLDE targetandspallationsourceconfiguration Optimizedgeometry: targetsurroundingthe converter BeO Target p (1.4 GeV) (p‐n) WConverter T. Stora et al., EURISOL-DS, TN03-25-2006-0003

  5. BeOtarget: production and characterization (R. Hodak) Appropriatetarget material 80 porous ceramic BeO pellets Vacuum furnace Max. temperature 2000ºC Nominal density – 71% Stability at 1400 °C Goodthermalconductivity Compatibility with rhenium Fast ageing and chemical reaction with other metals Thickness:0.2 cm 1 μm Rhenium boat 1.88 cm

  6. Estimation of in target 6He production • Neutronspectrum characteristics • - FLUKA simulations • - Activation Foils method (Al, Ni, In, Biin3 differentpositions Cross sections of the fast neutrons induced reactions Unfolded neutron spectra with Fluka and Geant HPGe Detector T. Stora, E. Noah, R. Hodak, T.Y. Hirsh, M. Hass, K. Singh, S. Vaintraub, P. Delahaye, M.G. St Laurent, G. Lhersonneau, Submitted to EPL

  7. BeO validation at ISOLDE • Release efficiency (>85% released) • Release curve provides additional information on performance of target and ion source unit • Yield determination requires measurement of entire release curve • In target rates: • 1.3x10136He/s 100kW, 40 MeV deuteron beam • 2x10136He/s 100kW, 1 GeV proton beam • 1x10146He/s 200kW, 2 GeV proton beam M. Hass et al., J. Phys. G 35, 014042 (2008) T. Hirsch et al. PoS (NuFact08) 090 6He release curve at 1400ºC Yield (6He ions/μC) T. Stora, E. Noah, R. Hodak, T.Y. Hirsh, M. Hass, K. Singh, S. Vaintraub, P. Delahaye, M.G. St Laurent, G. Lhersonneau, Submitted to EPL

  8. 18Ne productionusingmoltenfluoridesalts • A proposalinspiredfrom18F production for PET imaging • Moltensaltstestedandoperatedat ISOLDE (CERN 70-03, CERN 81-09) • Moltensalttargets (LiF): validatedatLouvain-la-Neuveusing 9 kW, 30 MeVprotonbeam Prototypeandfuturetests: -Optimizedstaticsodiummoltensaltunitat CERN/ISOLDE (IS509) -Moltensaltloop (incollaborationwith LPSC/Grenoble)

  9. Moltensalttargetsvalidatedat ISOLDE TeO2:K2Cl2:Li2Cl2 (molar ratio 29:25:46), Tm~347(5)ºC (CERN 81-09) TeCl3with Tm~224ºC (CERN 70-03)

  10. Moltensaltsin solar powerindustryandinoptics • Mixture of NaNO3:KNO3 (60:40 % mol.) • Used in solar power tower systems (Spain, U.S.A, Australia, Italy) • Efficient and low cost medium • to store thermal energy • Salt storage system lowers cost of solar plant operation http://www.gizmag.com/california-first-molten-salt-solar-power-plant/17298/ Gemasolar Array, Spain Molten alkali fluorides: - High electric conductivity - Heavy metal fluoride glass compositions for fabrication of mid-infrared, ultra low loss optical fibers

  11. Proposal for 18Ne production: NaFtargetloop (23Na(p, X)18Ne, 19F(p,2nα)18Ne) 2.1 L/s NaF-ZrF4 at 700ºC 7.5x24x15cm 2.1 L/s 6mA 160MeV NaF:ZrF4at 600ºC orNaF:LiFat 700ºC Transferline to ionsource T. Stora, P. Valko 40x15x15cm

  12. Targetandcontainermaterials Containerinfluorideresistantalloy (Haynes 242) (MachinedatCernMain Workshop, EN-MME-MS) Haynes 242alloy chemical composition (%weight)

  13. Synthesis of NaF-ZrF4 salts Mixture of stoichiometric quantities of NaF and ZrF4 and heating up to 600ºC under vacuum Initial mixture with 50:50% mol accounting for ZrF4 losses (ZrF4 sublimation at 600ºC) Starting reactants previously dried at 350ºC/72hrs in vacuum All handling and manipulation in gloveboxes under controlled argon atmosphere Synthesized NaF-ZrF4 salt

  14. Characterization of NaF-ZrF4 salts SEM/EDS analyses(Collab. S. Sgobba, EN-MME-MM) 20 μm

  15. Characterization of NaF-ZrF4 salts Differentialscanningcalorimetry (DSC) (collab. M.Taborelli ,TE-VSC-SCC)

  16. Preparation of the target unit 194 mm Salt reduced to powder 88% of nominal density (3.15 g/cm3 at RT, 2.54 g/cm3 at 800C), Quantity calculated according to volume occupied at 800C

  17. Preparationofthetargetunit: offlinetests • - Temperaturecalibrationshowed a meltingpointatc.a. 600(10)ºC accompaniedbyanexothermicreaction – indisagreementwith nominal meltingpointand DSC measurements • Possiblecauses: lossof ZrF4 andconsequenthighermeltingpoint; densityofthepowderlowerthantheestimated; high ZrF4 vapor pressure Ttarget Tchimney 194 mm

  18. ZrF4(g)+2H2O(g) ZrO2(s)+4HF(g) Offlinetests (continuation) Reactionobservedat 600ºC phaseseparationof NaF-ZrF4salt Saltoxidationanddecomposition Use ofgraphite as container: Lesswettability Masslosses vs. T

  19. Moltensaltloop: Pb/Biloopdevelopedat IPUL Diffusion chamber 0.6 m Camera (or window in the chamber) 0.4 m 1.8 m 0.8 m Furnace Experimental programat IPUL/Latviashowedfeasibilityof a moltenPb/Bishower to accomodate 100 kW, 1GeV incomingprotonbeam Liquid-metalloop setup at IPUL: final Report EURISOL DS, 2009 (E. Noahet al.) Na molten salt loop: some ideas on the diffusion chamber

  20. NaF:LiFmoltensalt: alternativetarget material? Lowervapourpressures for NaFandLiF Eutecticwithmeltingpointat ~649ºC ZrF4 LiF NaF • To confirmexperimentally: • Thermalstabilityof NaF:ZrF4 (ZrF4sublimatesattemperaturesrelevant for operatingconditions) • AlternativecompositionNaF:LiF (estimatedyield: 101318Ne/s for 7 mA, 160 MeV) – betterthermalbehaviorexpected

  21. FuturePlans • To confirmexperimentally: • Thermalstabilityof NaF:ZrF4 (does ZrF4sublimateattemperaturesrelevant for operatingconditions?) • AlternativecompositionNaF:LiF • (estimatedyield: 101318Ne/s for 7 mA, 160 MeV) – betterthermalbehaviorexpected • Online validationofthechosentarget material using a staticunitat ISOLDE (2012) usingoptimaltargetcompositionsandrunningconditions (testsongoing) • Loop design

More Related