1 / 58

Stereoselective Routes to Aziridines

Stereoselective Routes to Aziridines . Nate Bowling McMahon Group University of Wisconsin-Madison Sept. 12, 2002. Summary. Applications Uses for Optically Active Aziridines Addition of Nitrogen to Alkenes Nitrenes Atkinson-type Aziridinating Agents Asymmetric Aziridination Catalysis

bing
Télécharger la présentation

Stereoselective Routes to Aziridines

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Stereoselective Routes to Aziridines Nate Bowling McMahon Group University of Wisconsin-Madison Sept. 12, 2002

  2. Summary • Applications • Uses for Optically Active Aziridines • Addition of Nitrogen to Alkenes • Nitrenes • Atkinson-type Aziridinating Agents • Asymmetric Aziridination Catalysis • Aziridinations using Already Existing Stereocenters • Sharpless Asymmetric Epoxidation and Dihydroxylation • Amino Alcohols • Other Routes to Stereoselectivity • Imines • Michael Addition • Azirines • Resolution

  3. The Basics of Aziridines • Ring Strain (SE) of 26.7 kcal/mol (R1-5 = H) • Oxirane = 26.3 kcal/mol • Cyclopropane = 27.5 kcal/mol • Inversion barrier of nitrogen (R1-5 = H) = 18.9 kcal/mol • Normal amines = 5- 6 kcal/mol • Usually only susceptible to ring opening by nuclephilic attack upon activation by: • Protonation • Quaternization • Lewis acid adduct • R5 = electron withdrawing substituent Tanner, D. Angew. Chem. Int. Ed. Engl.1994, 33, 599-619. Nielsen, I. M. B. J. Phys. Chem. A1998, 102, 3193-3201. Bach, R. D.; Dmitrenko, O. J. Org. Chem.2002, 67, 3884-3896.

  4. Uses of Optically Active Aziridines

  5. Stereocontrolled Synthesis of Alpha and Beta Amino Acids Through Aziridines Dubois, L.; Dodd, R. H. Tetrahedron1993, 49, 901-910.

  6. Stereocontrolled Formation of β-Substituted Phenyl Amino Acids Xiong, C.; Wang, W.; Cai, C.; Hruby, V. J. J. Org. Chem.2002, 67, 1399-1402.

  7. Carbapenem Antibiotics Through a β-Lactam Ring Closing Tanner, D.; Somfai, P. Tetrahedron1988, 44, 619-624.

  8. Proposed Mode of Action of Mitomycin C Na, Y.; Wang, S.; Kohn, H. J. Am. Chem. Soc.2002, 124, 4666-4677.

  9. Asymmetric Dihydroxylation with Aziridines Tanner, D.; Harden, A.; Johansson, F.; Wyatt, P.; Andersson, P. G. Acta Chem. Scand.1996, 50, 361-368.

  10. Nitrenes

  11. Nitrene Addition in Accordance with Skell’s Rule McConaghy, J. S.; Lwowski, W. J. Am. Chem. Soc.1967, 89, 2357-2364.

  12. Different Reaction Pathways of Singlet and Triplet Nitrenes Mishra, A.; Rice, S. N.; Lwowski, W. J. Org. Chem.1968, 33, 481-486.

  13. α-Elimination, Irradiation, and Thermal Syntheses of Nitrenes Fioravanti, S.; Loreto, M. A.; Pellacani, L.; Tardella, P. A. Tetrahedron Lett.1993, 34, 4353-4354. Fioravanti, S.; Pellacani, L.; Stabile, S.; Tardella, P. A. Tetrahedron1998, 54, 6169-6176. Bergmeier, S. C.; Stanchina, D. M. J. Org. Chem.1997, 62, 4449-4456. McConaghy, J. S.; Lwowski, W. J. Am. Chem. Soc.1967, 89, 2357-2364. Mishra, A.; Rice, S. N.; Lwowski, W. J. Org. Chem. 1968, 33, 481-486.

  14. Highly Diastereoselective Nitrene Addition Fioravanti, S.; Morreale, A.; Pellacani, L.; Tardella, P. A. J. Org. Chem.2002, 67, 4972-4974.

  15. The Thermolysis of Several Different Species Gives One Common Nitrene Atkinson, R. S.; Jones, D. W.; Kelly, B. J. J. Chem. Soc., Perkin Trans. 11991, 1344-1346.

  16. Atkinson-type Aziridinating Agents Atkinson, R. S.; Rees, C. W. J. Chem. Soc. (C)1969, 772-778. Anderson, D. J.; Gilchrist, T. L.; Horwell, D. C.; Rees, C. W. J. Chem. Soc. (C), 1970, 576-579.

  17. Oxidation of Atkinson-type Aziridinating Agents Gives Stereospecific Addition Atkinson, R. S.; Rees, C. W. J. Chem. Soc. (C)1969, 772-778. Anderson, D. J.; Gilchrist, T. L.; Horwell, D. C.; Rees, C. W. J. Chem. Soc. (C), 1970, 576-579.

  18. Invertomers When X is electron withdrawing, the inversion barrier is decreased. When X is electron donating, the inversion barrier is increased. Atkinson, R. S.; Malpass, J. R. J. Chem. Soc., Perkin Trans. 11977, 2242-2249.

  19. Kinetic v. Thermodynamic Invertomer Formation Atkinson, R. S. Tetrahedron1999, 55, 1519-1559.

  20. Non-bonding Interactions Atkinson, R. S.; Grimshire, M. J.; Kelly, B. J. Tetrahedron1989, 45, 2875-2886.

  21. Alternative Intermediate • Oxidation with Pb(OAc)4 at –20oC, and subsequent examination by NMR spectroscopy at -30oC revealed no presence of aziridine, but amino protons had disappeared. • Removal of Pb(OAc)4 from solution revealed the presence of a methyl singlet that had previously been overshadowed by the Pb(OAc)4 acetate signal. • Surmised that the reacting intermediate may not be nitrene, but acetoxyamino group instead. Atkinson, R. S.; Grimshire, M. J.; Kelly, B. J. Tetrahedron1989, 45, 2875-2886.

  22. Mechanistic Pathway from Proposed Intermediate Atkinson, R. S.; Williams, P. J. J. Chem. Soc., Perkin Trans. 11996, 1951-1956.

  23. Support for the Proposed Mechanism Atkinson, R. S.; Williams, P. J. J. Chem. Soc., Perkin Trans. 11996, 1951-1956.

  24. Stereochemical Control with the Aziridinating Agent Atkinson, R. S.; Coogan, M. P.; Lochrie, I. S. T. Tetrahedron Lett.1996, 37, 5179-5182.

  25. Diastereoselectivity Using Oppolzer’s Auxiliary Kapron, J. T.; Santarsiero, B. D.; Vederas, J. C. J. Chem. Soc., Chem. Commun.1993, 1074-1076.

  26. Asymmetric Aziridination Catalysts

  27. Catalytic Aziridination via Nitrenoid Intermediate ØNitrenoid intermediate allows for asymmetric aziridination under the influence of L* Li, Z.; Quan, R. W.; Jacobsen, E. N. J. Am. Chem. Soc.1995, 117, 5889-5890.

  28. Jacobsen Asymmetric Aziridination Catalyst Li, Z.; Quan, R. W.; Jacobsen, E. N. J. Am. Chem. Soc.1995, 117, 5889-5890.

  29. Enantioselective Katsuki Aziridination Catalyst Nishikori, H.; Katsuki, T. Tetrahedron Lett.1996, 37, 9245-9248.

  30. Stereoselective Routes to Aziridines Using Sharpless Asymmetric Epoxidation and Asymmetric Dihydroxylation Catalysts

  31. Sharpless Asymmetric Epoxidation Tanner, D. Angew. Chem. Int. Ed. Engl.1994, 33, 599-619.

  32. Epoxide to Aziridine via Staudinger reaction Sommerdijk, N. A. J. M.; Buynsters, P. J. J. A.; Akdemir, H.; Geurts, D. G.; Nolte, R. J. M.; Zwanenburg, B. J. Org. Chem.1997, 62, 4955-4960.

  33. Epoxide to Aziridine via Aza-Payne Reaction Urabe, H.; Aoyama, Y.; Sato, F. Tetrahedron1992, 48, 5639-5646. Moulines, J.; Charpentier, P.; Bats, J.-P.; Nuhrich, A.; Lamidey, A.-M. Tetrahedron Lett.1992, 33, 487-490.

  34. Retention of Epoxide Configuration Toshimitsu, A.; Abe, H.; Hirosawa, C.; Tamao, K. J. Chem. Soc., Perkin Trans. 11994, 3465-3471.

  35. Sharpless Asymmetric Dihydroxylation Tanner, D. Angew. Chem. Int. Ed. Engl.1994, 33, 599-619.

  36. Different Pathways From Homochiral 1,2-Cyclic Sulfates Lohray, B. B.; Gao, Y.; Sharpless, K. B. Tetrahedron Lett.1989, 30, 2623-2626.

  37. Chiral Aziridines from Amino Alcohols

  38. Okawa’s Aziridination Procedure From Amino Alcohols Nakajima, K.; Takai, F.; Tanaka, T.; Okawa, K. Bull. Chem. Soc. Jpn.1978, 51, 1577-1578.

  39. R1 R2 R3 R4 time/solvent Yield (%) C6H5CH2 H H CH3 2 h/ether 90 C6H5CH2 CH3 CH3 H 18 h/ether 89 Mitsunobu Reaction: Amino-Alcohol to Aziridine Pfister, J. R. Synthesis1984, 969-970.

  40. Preparation of Aziridines from the Mitsunobu Reaction of 1,2-Aminoalcohols Wipf, P.; Miller, C. P. Tetrahedron Lett.1992, 33, 6267-6270.

  41. Stereoselective Formation of Aziridines from Imines

  42. General Mechanism of Aziridine Formation from Imines

  43. High Diastereoselectivities From Sulfinimines in an Aza-Darzens Reaction Davis, F. A.; Liu, H.; Zhou, P.; Fang, T.; Reddy, G. V.; Zhang, Y. J. Org. Chem.1999, 64, 7559-7567.

  44. Rationale for Diastereoselectivity Davis, F. A.; Liu, H.; Zhou, P.; Fang, T.; Reddy, G. V.; Zhang, Y. J. Org. Chem.1999, 64, 7559-7567.

  45. Enantioselectivity Using the Imino Corey-Chaykovsky Reaction Saito, T.; Sakairi, M.; Akiba, D. Tetrahedron Lett.2001, 42, 5451-5454.

  46. Highly Diastereoselective Aziridination of Imines with Trimethylsilyldiazomethane Aggarwal, V. K.; Alonso, E.; Ferrara, M.; Spey, S. E. J. Org. Chem.2002, 67, 2335-2344.

  47. Ring Closing Pathway Aggarwal, V. K.; Alonso, E.; Ferrara, M.; Spey, S. E. J. Org. Chem.2002, 67, 2335-2344.

  48. Rationale for Cis-Selectivity Aggarwal, V. K.; Alonso, E.; Ferrara, M.; Spey, S. E. J. Org. Chem.2002, 67, 2335-2344.

  49. Utilization of Michael Addition in Aziridine Synthesis

  50. Highly Diastereoselective, Auxiliary Mediated, Gabriel-Cromwell reaction Garner, P.; Dogan, O.; Pillai, S. Tetrahedron Lett.1994, 35, 1653-1656.

More Related