1 / 96

LH e C Status

LH e C Status. John Dainton Cockcroft Institute and Univ Liverpool , Daresbury Science and Innovation Campus, GB. Why? LH e C Physics – some snapshots Machine Experiment When: Towards a CDR. with and for the LH e C steering group. http://www.lhec.org.uk. Why?. Why? The Energy Frontier.

brady-baird
Télécharger la présentation

LH e C Status

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LHeC Status John Dainton Cockcroft Institute and Univ Liverpool, Daresbury Science and Innovation Campus, GB • Why? • LHeC Physics – some snapshots • Machine • Experiment • When: Towards a CDR with and for the LHeC steering group http://www.lhec.org.uk

  2. Why?

  3. Why? The Energy Frontier  1968-1986 pp Drell Yan charm W,Z jets lh e+e- SU(2)L x U(1) QCD quarks neutral currents singlet eR asymptotic freedom charm 3 colours gluon

  4. Why? The Energy Frontier  1986-2010 Fermi scale pp b quark t quark MW (TeVatron) e+e- lh Standard Model spacelike EW strong interaction high density QCD c,b in hadrons (HERA) νmass MZ , sin2θ, 3 ν h.o. EW (t,H ?) (LEP/SLC) CKM (B-factory)

  5.  2008-2033? Terascale Why? The Energy Frontier pp TeV discovery ? Higgs? new particles? new symmetries? (LHC) e+e- - lh tt discovery & precision ? spectroscopy Higgs ? (ILC/CLIC) Beyond Standard Model new physics TeVdiscovery & precision ? particles ? symmetries ? dense QCD (LHeC)

  6.  2008-2033? chromodynamic creation ? Why? The Matter Frontier AA QGP ? QCD phase equilibria? nuclear dynamics? nuclear formation (LHC) leptonA e+e- matter creation new physics QCD dof @ extremes strong QCD  1C (LHeC) pQCD (ILC/CLIC)

  7. Why:Leptons  Quarks ? •how are leptons and quarks related ? ICHEP76 Tblisi •put them together at the highest energy in the finest detail

  8. Lepton+quark @ TeV ●unique chiral probe @ 0.0001 fm ? ●70 e±p7000 GeV cm energy < 1.4 TeV e Manchester ● Cambridge RL Chadwick  SLAC Z W nucleus ? nucleon protons+neutrons Q2 quark e± RL seq am? ● NC+CC+gluon g+EW LHeC SM + new Lq physics @ ~ 0.0001 fm ? ?

  9. Why: Structure @TeV ●unique chiral probe @ 0.0001 fm ? e e Manchester ● Cambridge Chadwick SLAC Q2 y nucleus x nucleon protons+neutrons quark QCD ● NC+CC+gluon g+EW SM + q structure @ ~ 0.0001 fm ? LHeC ?

  10. Why? The Scope discovery + precision @ Terascale precision structure and dynamics @ LHC TeV scale nuclear structure & dynamics @ 100s GeV very dense matter

  11. TeV eq Kinematic Reach Q2 e± RL seq am? space-like >TeV ●2007: HERA -Q2 ≤ 30,000 GeV2 seq>TeV LHeC -seq~ (300 GeV)2 in ~ 0.7 am 3×10-7 ●≥20..?: LHeC -Q2≤ 4×106 GeV2 -seq≤(4000 GeV)2 in ~ 0.1 am !

  12. Most of the mass of ordinary matter is concentrated in protons and neutrons. It arises from …[a]… profound, and beautiful, source. Why: Dense Colour? Numerical simulation of QCD shows that if we built protons and neutrons in an imaginary world with no Higgs mechanism - purely out of quarks and gluons with zero mass - their masses would not be very different fromwhat they actually are. Their mass arises from pure energy, associated with the dynamics of confinement in QCD,according tothe relation m = E/c2. This profound account of the origin of mass is a crown jewel in our Theory of Matter. Frank Wilcek CERN October 11, 2000 •probe hadronic matter at highest parton density

  13. QCD is headline stuff ! ●found on a Guardian newsaper web page ●found on Frank Wilcek’s blackboard

  14. QCD Field Energy Density TeV ep Kinematic Reach ●2007: HERA ●≥2016?: LHeC -Q2 ≥ 1 GeV2 -Q2 ≥ 1GeV2 space-like >TeV -xBj≥ 5×10-5 -xBj≥ 5×10-7 e± e± Q2 y x 3×10-7 seq>TeV LHeC

  15. Gluon recombination •Q2 size of gluons ●≥20..?: LHeC -Q2 ≥ 1 GeV2 •xBj phase space for gluons -xBj≥ 5×10-7 p and A e e Q2 y x low x large nuclei

  16. 2.LHeC physics - some snapshots

  17. Lepton+quark @ TeV ●leptoquark systems – new physics + SM LHC LHeC Re + resonance SM (hadronic) + signal Lq & LqLq production σ~ few × 0.1 fb (Λ=0.1) SM (electroweak) + signal Lq formation σ~ 100 fb (Λ=0.1)

  18. Lepton+quark @ TeV ●leptoquark systems – new physics +SM LHeC 1 TeV LHeC ×10-3 ↓ LHC LHC

  19. e * e q _ q e, _ q or q ? q e+ q or q ? e- Lepton+quark @ TeV LHC Lq pairs+decay LHeC Lq formation+decay e+ F=0 e- F=2 fermion number _ _ defined formation (eLR)  precision BRs (NC CC) inclusive coherence unique PWA SM + signal + interference qqgLq Lq production mechanism ? disentangle mass spectrum ? spin parity and chirality jet+lepton+pT balance jet +pT imbalance experiml signature jets + leptons

  20. e * e q q e, q Lepton+quark @ TeV LHC Lq +decay LHeC Lq formation+decay e+ F=0 e- F=2 fermion number _ defined formation (eLR)  precision BRs (NC CC) inclusive coherence unique PWA SM + signal + interference gqLq l production mechanism ? disentangle mass spectrum ? spin parity and chirality jet+lepton+pT balance jet +pT imbalance experiml signature jet + leptons

  21. Unification ? •precision QCD at highest energy ●short distance structure of SM+ -2007 @ 10-3 ppm -2007 GF@ 10 ppm -2007 G@ 0.1% -2007 αS @ 1-2% -LHeC + detector αS @ few ‰ ● precision  extrapolation  discovery probe new chromodynamic physics – beyond SM ?

  22. Lepton-Parton and Parton-Parton ? •ep eX •pp (jet+jet)X probe-parton jet e ? ? RL g q  Z W ? ? jet •pp energy scale: 70007000 GeV •LHeC energy scale: 707000 GeV probe+p at LHeC scale probe = e xprobe/p = 0.01

  23. LHC probe parton ●probe-parton @ x  0.01 - - -xq = xU +xD +xU +xD g :q ~2:1 mixed ●probe-parton @ x » 0.01 g :q0 all quark “mixed” LHC probe @ LHeC energy q LHC probe @ LHC top energy

  24. Gluon recombination @ HERA ●low-xrise of F2 -HERA: precision @ x > 10-4 @ Q2=10 GeV2 ●relentless rise of quark (F2) and gluon ∂F2/∂lnQ2

  25. Gluon recombination @ LHeC ●low-xrise of F2 -LHeC: precision @ x > 10-4 @ Q2=250 GeV2 stat 0.1% sys 2-3% HERA ●LHeC “nails” saturation (10 fb-1) (Jeff Forshaw)

  26. Gluon recombination @ LHeC ●epsaturation Q2 ≤ 5 GeV2 eAsaturation Q2 ≤ 20 GeV2 ●LHeC “nails” saturation

  27. Partons in Nuclear Matter ●fundamental to origin of mass in Universe (Wilczek) - from nucleon valence to QCD-field dominated (x ) - increasing number of valence partons (A ) ●very limited, but tantalising, old data -Q2 < 1 GeV2x > 0.01

  28. DGLAP 1C dynamics in p and A ●low-xreach at LHeC precision @ x > 10-4 @ Q2=250 GeV2(x =βxI) HERA LHeC? P I P @ low-β ●low x physics of P P in P: triple R QCD  reggeon calculus ? I I I I

  29. 1C dynamics in p and A ●low-xP physics at LHeC I ●LHeC diffraction “nails” saturation

  30. 1C dynamics in p and A ● P physics at LHeC 0+ “vacuum” physics I ILC e+e- 1- “vacuum” physics ●* P physics @ 100 GeV ●e P physics @ > 100 GeV: leptopomerons ? ●rapidity ≤ 5 θ ≤ fewo I I

  31. 3.Machine

  32. Proton beam ●”standard” LHC protons … with electrons? antiprotons protons protons electrons? protons Np εpN

  33. LHC ●e-ring - bypass experiments and RF ?

  34. ep Collisions ●afterB physics @ LHC ? e p civil engineering tunnel >2×250m×2m Ø @IP LHeC ep alongsidepp data-taking @ LHC F Willeke (DESY and BNL)

  35. Luminosity: e-Ring 100 mA ●e-ring - 1033 cm-2s-1 -Ee < 80 GeV - power P < 60 MW - ERL  1034cm-2s-1? (eRHIC) klystron + SR 1033 cf also A.Verdier 1990, E.Keil 1986

  36. e-Ring IR simultaneous pp (AA) and ep (eA)

  37. e-ring Synchrotron radiation fan and HERA type absorber First p beam lens: septum quadrupole. Cross section and Field calculation 100W/mm2 cf also W.Bartel Aachen 1990

  38. power: 25 ns  nx40 MHz RF I < 100 mA 60 klystrons @ 1.3MW, coupler 0.5MW, 66% effy extra RF in bypasses injection: 1.4x1010e in 2800 bunches (LEP2 4x1011in 4) energy < 20 GeV (ELFE, KEK …) SR  LHC magnets: water cooling+Pb bypasses: ATLAS CMS + RF  ~500m from arcs ~ -20cm radius of e-ring space: above LHC e-ring Issues

  39. Equipment above installed LHC beamlines…. Kicker magnet installed on beam dump line above LHC Circulating LHC beams pass in between support feet

  40. e±p Luminosity ●astounding ! ●×102LNMCμp @ 0.01 fm ●LeRHICepolppoleA @ 0.007 fm ●×102LHERA epolp @ 0.001 fm ×10 ●LLHeCe±p eA @ 0.00014 fm indisputably a next step ?

  41. e-linac + LHC 6km alternative sites D Brandt (CERN), F.Zimmermann (CERN), et al. “QCD Explorer” S. Chattopadhyay (Cockcroft), F.Zimmermann (CERN), et al.

  42. Luminosity: Linac-Ring s = (2 TeV)2  Ie = 100 mA ●e-linac - 1032 cm-2s-1 ~HERA -Ee < 140 GeV ($s) - power P < 60 MW - 6 km+gaps @23 MV/m High cryo load to CW cavities lumi + energy horizon

  43. Linac-Ring & Ring-Ring L-R R-R Energy / GeV 40-140 … 40-80 Luminosity / 1032 cm-2 s-1 0.5 10 Mean Luminosity, relative 2 1 [dump at Lpeak /e] Lepton Polarisation 60-80% 30% [?] Tunnel / km 6 2.5=0.5 * 5 bypasses Biggest challenge CW cavities Civil Engineering Ring+Rf installation Biggest limitation luminosity (ERL,CW) maximum energy IR not considered yet allows ep+pp one design? (eRHIC) 2 configurations [lox, hiq]

  44. Machine ●ring-ring - stupendous lumi (~ LHC) - energy horizon ~ 1.2TeV - civil engineering impact on LHC -e-polarisation (Sokolov-Ternov) -ep (eA)with pp (AA) ●linac-ring - moderate (~HERA) lumi (~ LHC) - energy horizon ~ multi-TeV - less civil engineering impact on LHC -e-polarisation (source: e+?) -ep (eA)with pp (AA) ●LHC upgrade: cost ?

  45. eRHIC and ERL Coherent Electron Cooling IP#12 - main • Main beneficiary from the cooling of hadron beams • Reduction of the hadron bunch length shortens vertex • It also reduces e-beam disruption • Emittance reduction provides for proportional reduction of the electron beam current (less X-ray back-ground in the detector, higher energy eRHIC above 20 GeV, ….) • The reduction of emittance and bunch length allow reduction of * to few cm from present 25 cm and corresponding increase would • push e--p luminosity to 1034 cm-2s-1 (* =10 cm) and above Ø1.22 km RHIC Four multiple passes: vertical separation of the arcs EBIS Booster Linac AGS V Litvinenko (BNL)

  46. eRHIC loop magnets 5 mm 5 mm 5 mm 5 mm 5 mm 5 mm • Small gap provides for low current • Very low power consumption magnets 20 GeV e-beam eRHIC 16 GeV e-beam Common vacuum chamber 12 GeV e-beam 8 GeV e-beam C- Dipole C-Quad V Litvinenko (BNL)

  47. ERL spin transparency Bargman, Mitchel,Telegdi equation n passes Total angle Has solution for all energies! n=2 Gun V Litvinenko (BNL)

  48. Ring-Ring LHeC is limited by power of synchrotron radiation from the e-beam! M.Klein, ecfa07 talk

  49. For linac-ring LHeC a pulsed linac with 0.5% duty factor (1 msec, 5 Hz) without energy recovery considered M.Klein, ecfa07 talk

  50. ERL based LHeC Hard radiation may be a problem

More Related