Fourier Series

# Fourier Series

Télécharger la présentation

## Fourier Series

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
##### Presentation Transcript

1. Fourier Series Engineering Mathematics – I Prepared By G.VANMATHI, M.Sc.,M.Phil., Assistant Professor / Mathematics

2. Content • Periodic Functions • Fourier Series

3. Fourier Series Periodic Functions

4. The Mathematic Formulation • Any function that satisfies where T is a constant and is called the period of the function.

5. Example: Find its period. Fact: smallest T

6. Example: Find its period. must be a rational number

7. Example: Is this function a periodic one? not a rational number

8. Fourier Series Fourier Series

9. A periodic sequence f(t) t T 2T 3T Introduction • Decompose a periodic input signal into primitive periodic components.

10. Synthesis T is a period of all the above signals Even Part Odd Part DC Part Let 0=2/T.

11. Orthogonal Functions • Call a set of functions {k}orthogonal on an interval a < t < b if it satisfies

12. Orthogonal set of Sinusoidal Functions Define 0=2/T. We now prove this one

13. Proof m  n 0 0

14. Proof m = n 0

15. Define 0=2/T. Orthogonal set of Sinusoidal Functions an orthogonal set.

16. Decomposition

17. Proof Use the following facts:

18. f(t) 1 -6 -5 -4 -3 -2 -  2 3 4 5 Example (Square Wave)

19. f(t) 1 -6 -5 -4 -3 -2 -  2 3 4 5 Example (Square Wave)

20. f(t) 1 -6 -5 -4 -3 -2 -  2 3 4 5 Example (Square Wave)

21. Harmonics T is a period of all the above signals Even Part Odd Part DC Part

22. Define , called the fundamental angular frequency. Define , called the n-th harmonicof the periodic function. Harmonics

23. Harmonics

24. harmonic amplitude phase angle Amplitudes and Phase Angles