1 / 60

PREETI DHANJAL DEPARTMENT OF MATHEMATICS

12. VECTORS AND THE GEOMETRY OF SPACE. PREETI DHANJAL DEPARTMENT OF MATHEMATICS. VECTORS AND THE GEOMETRY OF SPACE. We will see that vectors provide particularly simple descriptions of lines and planes in space. VECTORS AND THE GEOMETRY OF SPACE. Three-Dimensional Coordinate Systems.

Télécharger la présentation

PREETI DHANJAL DEPARTMENT OF MATHEMATICS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 12 VECTORS AND THE GEOMETRY OF SPACE PREETI DHANJAL DEPARTMENT OF MATHEMATICS

  2. VECTORS AND THE GEOMETRY OF SPACE We will see that vectors provide particularly simple descriptions of lines and planes in space.

  3. VECTORS AND THE GEOMETRY OF SPACE Three-Dimensional Coordinate Systems

  4. TWO-DIMENSIONAL (2-D) COORDINATE SYSTEMS To locate a point in a plane, two numbers are necessary. • We know that any point in the plane can be represented as an ordered pair (a, b) of real numbers—where a is the x-coordinate and b is the y-coordinate. • For this reason, a plane is called two-dimensional.

  5. THREE-DIMENSIONAL (3-D) COORDINATE SYSTEMS To locate a point in space, three numbers are required. • We represent any point in space by an ordered triple (a, b, c) of real numbers.

  6. 3-D COORDINATE SYSTEMS In order to represent points in space, we first choose: • A fixed point O (the origin) • Three directed lines through O that are perpendicular to each other

  7. COORDINATE AXES The three lines are called the coordinate axes. They are labeled: • x-axis • y-axis • z-axis

  8. COORDINATE AXES Usually, we think of: • The x- and y-axes as being horizontal • The z-axis as being vertical

  9. COORDINATE AXES We draw the orientation of the axes as shown.

  10. COORDINATE AXES The direction of the z-axis is determined by the right-hand rule, illustrated as follows.

  11. COORDINATE AXES Curl the fingers of your right hand around the z-axis in the direction of a 90° counterclockwise rotation from the positive x-axis to the positive y-axis. • Then, your thumb points in the positive direction of the z-axis.

  12. COORDINATE PLANES The three coordinate axes determine the three coordinate planes. • The xy-plane contains the x- and y-axes. • The yz-plane contains the y- and z-axes. • The xz-plane contains the x- and z-axes.

  13. OCTANTS These three coordinate planes divide space into eight parts, called octants. • The firstoctant, in the foreground, is determined by the positive axes.

  14. 3-D COORDINATE SYSTEMS Many people have some difficulty visualizing diagrams of 3-D figures. Thus, you may find it helpful to do the following.

  15. 3-D COORDINATE SYSTEMS Look at any bottom corner of a room and call the corner the origin.

  16. 3-D COORDINATE SYSTEMS The wall on your left is in the xz-plane. The wall on your right is in the yz-plane. The floor is in the xy-plane.

  17. 3-D COORDINATE SYSTEMS The x-axis runs along the intersection of the floor and the left wall. The y-axis runs along that of the floor and the right wall.

  18. 3-D COORDINATE SYSTEMS The z-axis runs up from the floor toward the ceiling along the intersection of the two walls.

  19. 3-D COORDINATE SYSTEMS You are situated in the first octant. You can now imagine seven other rooms situated in the other seven octants. • There are three on the same floor and four on the floor below. • They are all connected by the common corner point O.

  20. 3-D COORDINATE SYSTEMS Now, if P is any point in space, let: • a be the (directed) distance from the yz-plane to P. • b be the distance from the xz-plane to P. • c be the distance from the xy-plane to P.

  21. 3-D COORDINATE SYSTEMS We represent the point P by the ordered triple of real numbers (a, b, c). We call a, b, and c the coordinatesof P. • a is the x-coordinate. • b is the y-coordinate. • c is the z-coordinate.

  22. 3-D COORDINATE SYSTEMS Thus, to locate the point (a, b, c), we can start at the origin O and proceed as follows: • First, move a units along the x-axis. • Then, move b units parallel to the y-axis. • Finally, move c units parallel to the z-axis.

  23. 3-D COORDINATE SYSTEMS The point P(a, b, c) determines a rectangular box.

  24. PROJECTIONS If we drop a perpendicular from P to the xy-plane, we get a point Q with coordinates (a, b, 0). • This is called the projection of Pon the xy-plane.

  25. PROJECTIONS Similarly, R(0, b, c) and S(a, 0, c) are the projections of P on the yz-plane and xz-plane, respectively.

  26. 3-D COORDINATE SYSTEMS As numerical illustrations, the points (–4, 3, –5) and (3, –2, –6) are plotted here.

  27. 3-D COORDINATE SYSTEMS The Cartesian product R x R x R = {(x, y, z) | x, y, zR} is the set of all ordered triples of real numbers and is denoted by R3.

  28. 3-D RECTANGULAR COORDINATE SYSTEM We have given a one-to-one correspondence between points P in space and ordered triples (a, b, c) in R3. • It is called a 3-D rectangularcoordinatesystem.

  29. 3-D RECTANGULAR COORDINATE SYSTEM Notice that, in terms of coordinates, the first octant can be described as the set of points whose coordinates are all positive.

  30. 2-D VS. 3-D ANALYTIC GEOMETRY In 2-D analytic geometry, the graph of an equation involving x and y is a curve in R2. In 3-D analytic geometry, an equation in x, y, and z represents a surfacein R3.

  31. 3-D COORDINATE SYSTEMS Example 1 What surfaces in R3 are represented by the following equations? • z = 3 • y = 5

  32. 3-D COORDINATE SYSTEMS Example 1 a The equation z = 3 represents the set {(x, y, z) | z = 3}. • This is the set of all points in R3 whose z-coordinate is 3.

  33. 3-D COORDINATE SYSTEMS Example 1 a This is the horizontal plane that is parallel to the xy-plane and three units above it.

  34. 3-D COORDINATE SYSTEMS Example 1 b The equation y = 5 represents the set of all points in R3 whose y-coordinate is 5.

  35. 3-D COORDINATE SYSTEMS Example 1 b This is the vertical plane that is parallel to the xz-plane and five units to the right of it.

  36. NOTE Note When an equation is given, we must understand from the context whether it represents either: • A curve in R2 • A surface in R3

  37. NOTE In Example 1, y = 5 represents a plane in R3.

  38. NOTE However, of course, y = 5 can also represent a line in R2 if we are dealing with two-dimensional analytic geometry.

  39. NOTE In general, if k is a constant, then • x = k represents a plane parallel to the yz-plane. • y = k is a plane parallel to the xz-plane. • z = k is a plane parallel to the xy-plane.

  40. NOTE In this earlier figure, the faces of the box are formed by: • The three coordinate planes x = 0 (yz-plane), y = 0 (xz-plane), and z = 0 (xy-plane) • The planes x = a, y = b, and z = c

  41. 3-D COORDINATE SYSTEMS The familiar formula for the distance between two points in a plane is easily extended to the following 3-D formula.

  42. DISTANCE FORMULA IN THREE DIMENSIONS The distance |P1P2| between the points P1(x1,y1, z1) and P2(x2, y2, z2) is:

  43. 3-D COORDINATE SYSTEMS To see why this formula is true, we construct a rectangular box as shown, where: • P1 and P2 are opposite vertices. • The faces of the box are parallel to the coordinate planes.

  44. 3-D COORDINATE SYSTEMS If A(x2, y1, z1) and B(x2, y2, z1) are the vertices of the box, then • |P1A| = |x2 – x1| • |AB| = |y2 – y1| • |BP2| = |z2 – z1|

  45. 3-D COORDINATE SYSTEMS Triangles P1BP2 and P1AB are right-angled. So, two applications of the Pythagorean Theorem give: • |P1P2|2 = |P1B|2 + |BP2|2 • |P1B|2 = |P1A|2 + |AB|2

  46. 3-D COORDINATE SYSTEMS Combining those equations, we get: |P1P2|2 = |P1A|2 + |AB|2 + |BP2|2 = |x2 – x1|2 + |y2 – y1|2 + |z2 – z1|2 = (x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2

  47. 3-D COORDINATE SYSTEMS Therefore,

  48. 3-D COORDINATE SYSTEMS Example 3 The distance from the point P(2, –1, 7) to the point Q(1, –3, 5) is:

  49. 3-D COORDINATE SYSTEMS Example 4 Find an equation of a sphere with radius r and center C(h, k, l).

  50. 3-D COORDINATE SYSTEMS Example 4 By definition, a sphere is the set of all points P(x, y ,z) whose distance from Cis r.

More Related