1 / 39

Biomarkers in terrestrial planet atmospheres Super-Earths & Life a fascinating

Biomarkers in terrestrial planet atmospheres Super-Earths & Life a fascinating cross-disciplinary puzzle. Lisa Kaltenegger MPIA/Harvard University IAUS276, Oct 15, 2010. The Pale Blue Dot Voyager image, 4 billion km away. a dot of light = astronomy.

brina
Télécharger la présentation

Biomarkers in terrestrial planet atmospheres Super-Earths & Life a fascinating

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Biomarkers in terrestrial planet atmospheres Super-Earths & Life a fascinating cross-disciplinary puzzle Lisa Kaltenegger MPIA/Harvard University IAUS276, Oct 15, 2010

  2. The Pale Blue Dot Voyager image, 4 billion km away

  3. a dot of light = astronomy We will never know how to study by any means the chemical composition of stars Auguste Comte (1835)

  4. Fortney, 2007 Sasselov 2007 RV & Transits: density Torres 2008 Zeng & Sasselov (in press)

  5. NEXT STEP NOW

  6. Signs Of Life On An Earth-like Planet Needed for life Plant product Primordial; & bacteria product Bacteria Surface features e.g. Plant life observed Water Ozone Methane Oxygen Nitrous oxide Carbon dioxide Vegetation ?

  7. Visible spectrum of Earth Chlorophyll ? Water H2O Rayleigh Oxygen O2 Ozone O3 Observed Earthshine, reflected from dark side of moon. Ref.: Kaltenegger et al 2007, ApJ 574, 2007 see also e.g.: Montanez-Rodrigez 2005, 07, Arnold 2002, 06, 09; Turnbull 06

  8. Earth IR-emission Kaltenegger, Traub, Jucks 2007 (ApJ) TES data; Christensen 2004

  9. Thermal structure rocky Exo-P atmosphere EUV • well mixed, dry transparent atmosphere ∂T/∂z = -g/cp  convection Earth : -9.8 K/km, Mars -5 K/km, Venus -10 K/km, Titan 1.3 K/km REALITY: atmosphere absorbs & reemits in thermal IR Radiative equilibrium profile & convection mid-atmosphere: UV (λ < 360 nm) O3: A) stratosphere high-atmosphere: 10-2 - 10-4 Pa: EUV (λ < 200 nm) photolyse any molecules, heats low density gas : B) thermosphere ~10-4 -Pa Altitude Temperature

  10. Titan Earth Earth Giants Titan

  11. Features: 1) observables & 2) unique ? Selsis 2007 (model Tinetti)

  12. Transit Geometry h ≈ T/(g m) z T( z, ) h is the effective height of an opaque atmosphere: h() = ∫ (1-T) dz So R() = R0 + h()

  13. Explore Planets - EGP 2007 + Atmosphere by transits... HD189733b (Tinetti07, Swain08) Earth (Palle 09, Kaltenegger 09)

  14. Earth Primary Transit: collect transmitted starlight 2002/2014+ ? Kaltenegger & Traub ApJ 2009 Palle et al. Nature 2009 Data: ATMOS B. Irion 2002 SNR = N1/2(tot) * 2Rp h / Rs2

  15. Earth: ATMOS-3:Transmission validation in far-IR ATMOS-3 transmission of sunlight through Earth’s atmosphere, measured with a fast FTS on Shuttle yellow = model Fit is close, but line wings are not perfect, perhaps owing to line- mixing effects in strong bands. Note low transmission below 10 km.

  16. JWST Best Earths: Closest Stars/Transit Kaltenegger & Traub ApJ 2009

  17. Line of Evidence SPECTRAL FINGERPRINT LIFE ? ATMOSPHERE INTERIOR FIND WHAT KIND FORMATION

  18. MODEL STAR: Flux PLANET: Composition Water delivery Outgassing Tectonic Geoch. Cycle Magnetosphere = ATMOSPHERES SPECTRAL Fingerprint DATA

  19. Exo-P = Rocky ExoPlanets CodeL. Kaltenegger Planet interior,outgassing RF,WH LK Gravity, size, composition LK • Photochem • (based on Kasting 1986) • Extended Photochemistry (based on Pavlov 2000) • Radiative Transfer • (based on SAO98, Traub & Stier 1979) biota, host stars, geo.cycles SR,LK Clouds, Hazes, Escape LK Detectable features LK Kaltenegger et al 2007, 2009, 2009b ApJ

  20. Different evolution state / age / mass / etc.

  21. Biomarkers & spectra change over timeIMPORTANT: e.g: Surface temp change, cloud! coverage Kaltenegger et al ApJ 2007

  22. mid IR (5-20mm): Res = 25 Kaltenegger et al 2007 ApJ

  23. VIS (0.4-1.2 mm): Res = 150 Kaltenegger et al 2007 ApJ

  24. Habitable Zone – water liquid on surface of Earth-analog Selsis et al 2007, Kaltenegger et al 2008, Seager et al 2008, Miller-Ricci et al 2008,...

  25. Climate Stabilization : Carbonate – Silicate Cycle Walker et al. 1981 Ts ↓ water cycle ↓ weathering ↓ Ts ↑ Greenhouse effect ↑ PCO2 ↑

  26. Pinatubo – explosive exo-volcanos ? Res = 150, SNR calc. for JWST (pure photon noise, template input for instruments) Kaltenegger & Sasselov (ApJ 09), Kaltenegger & Henning (ApJ 2010)

  27. Goldilocks ZoneGl 581c... HOT, Gl581d COLD Selsis et al 2007, Kaltenegger et al 2010, von Paris et al 2010, Seager et al 2008, Miller-Ricci et al 2008,...

  28. Test case: Gl 581d Kaltenegger, Segura & Mohanty 2010 (ApJ)

  29. Test case: Gl 581d Kaltenegger, Segura & Mohanty 2009 (ApJ)

  30. Gl 581d spectra& star/planet contrast ratioKaltenegger, Mohanty & Segura ApJ 2010Spectra (0.1 - 100 mm): Resolution 150

  31. Gl 581d Transit Spectrain planetary radius Kaltenegger, Mohanty & Segura ApJ 2010Spectra (0.4 - 40 mm): Resolution 150

  32. Exo-P = current students Sarah Rugheimer, Harvard, Astroph. Leah Kilvert, Un. Victoria, Astroph. Wade Henning, Harvard, EPS Roger Fu, Harvard, EPS OPEN (AAS job registry): 2 Postdoc & 1 PhD pos MPIA Heidelberg

  33. Science Case: ELT,GMT,TMT, JWST(SPITZER, SPICA, SMALL SPACE MISSIONS (e.g TESS)) • Not just FIND... (POS VIEW  ) • Characterize rocky exoplanets • composition 0– 20 years • habitability 5 – 20years • stage of evolution 5 – 30 years • geochemical cycles 5 – 20 years • HR Diagram of planets 5 – 20 years Are there other worlds like ours? Epicurius (c. 300 B.C) 2300 years and counting.... Let‘s find out

  34. WHY ?

  35. Summary • First potentially Habitable Super-Earth found • JWST, ELT/GMT/TMT & new small missions • Models: - instrument design, data analysis • - explore the underlying physics • Earth: a rosetta stone for exoplanets Credit NAI, Harvard Origins of Life

  36. Super Earth around M star HZ CO2 Gl 581d: Earth Atmosphere, 2.63 bar, 1.8x Earth gravity Tidally locked planet (rapidely rotating planet comparison line (shown in grey)) Scenario 1: high heat transport from day (60%) to night side (40%) H2O O3 CO2 CH4 Kaltenegger, Segura, Mohanty ApJ sub (ApJ)

More Related