1 / 42

Manufacturing Systems

Manufacturing Systems. Concurrent Engineering. Concurrent Engineering. Concurrent Engineering: Is a strategy where all the tasks involved in product development are done in parallel. Collaboration between all individuals, groups and departments within a company. Customer research Designers

brooklyn
Télécharger la présentation

Manufacturing Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Manufacturing Systems Concurrent Engineering

  2. Concurrent Engineering Concurrent Engineering: Is a strategy where all the tasks involved in product development are done in parallel. Collaboration between all individuals, groups and departments within a company. • Customer research • Designers • Marketing • Accounting • Engineering

  3. Suppliers Customers R&D Idea Generation Competitors Marketing Product or Service concept Feasibility Study Performance Specifications Preliminary Design Form Design Revising and testing prototypes Functional Design Production Design Design Specifications Manufacturing Specifications Pilot run and final tests Final Design and process plans Product Launch Concurrent Engineering Commercial Design Process Linear Process

  4. Concurrent Engineering • Techniques: • Perceptual mapping • Benchmarking • Reverse Engineering

  5. Good Taste • Coco Pops Low Nutrition High Nutrition • Cheerios • Rice Krispies • Shredded Wheat Bad Taste Concurrent Engineering Perceptual Mapping • Compares customers perception of available products • Identifies gap in market

  6. Concurrent Engineering • Benchmarking • Get the best product available • Base performance specifications for new product on it • Reverse Engineering • Dismantle and inspect competitors product(s) • Select features to incorporate into new product

  7. Concurrent Engineering Demand for the proposed product? Cost of developing and producing the product? Does company have manufacturing capability? Skilled personnel?

  8. Concurrent Engineering Form Design: Physical appearance of the product Functional Design: Performance of the product Production Design: How to manufacture product

  9. Concurrent Engineering • Prototype produced • Adjustments made • Final specification agreed

  10. Concurrent Engineering • Manufacturing process commences • Product is marketed to buying public

  11. Concurrent Engineering Traditional Process = Linear Vs Concurrent Engineering = Team collaboration

  12. Concurrent Engineering • Why Concurrent Engineering? • Pace of market change has increased • Companies must keep pace with changing markets • Decisions made sooner rather than later • Reduces/eliminates repetition of tasks • Reduces waste and reworking of design • Product quicker to market • Maximises company profit • Company operates more efficiently

  13. Concurrent Engineering • To make decisions concurrently: • Team knows the design goals/objectives • Team is aware of the interrelationships between all aspects of the design process • Superior communication between all sections of the company • Method: • Quality Function Deployment (QFD)

  14. Concurrent Engineering • Quality Function Deployment (QFD) • Collection of matrices that converts the needs of the customer into technical specifications at all stages of the design and manufacture process. • Product Planning (most popular) • House of Quality

  15. Concurrent Engineering House of Quality • Customer requirements prioritised (scale or %) • Competitive product evaluation • Engineering characteristics • Interrelationships of 1 & 3 • Relations between engineering characteristics • Targets for new product 5 3 4 1 2 6

  16. Concurrent Engineering Example: Water-pond Alarm 1. Identify customer requirement and prioritise them (scale or %)

  17. Concurrent Engineering 2. Compare product to competitors weighting B

  18. Concurrent Engineering 3.Identify engineering characteristics Complexity of circuit Material for casing Energy Efficiency Cost of Sensor Weighting

  19. Complexity of circuit Material for casing Energy Efficiency Cost of Sensor Weighting Concurrent Engineering 4. Identify strength of interrelationships between customer requirements and the engineering characteristics. Legend: Positive correlation + Strong positive correlation ++ None Negative correlation - Strong Negative correlation - -

  20. Complexity of circuit Material for casing Energy Efficiency Cost of Sensor Weighting Concurrent Engineering Interpreting the matrix Sensitivity to water level is likely to be very dependent on complexity of circuit Increasing the noise level could reduce the energy efficiency

  21. Complexity of circuit Material for casing Energy Efficiency Cost of Sensor Weighting Concurrent Engineering A complex circuit and quality sensor could increase cost of product The choice of material will affect the durability of the product

  22. Concurrent Engineering 5. Identify correlation between engineering characteristics. A good quality sensor could improve energy efficiency Increasing complexity of circuit could require a more costly sensor Complex circuit (more parts) could reduce energy efficiency

  23. Concurrent Engineering 6. Identify targets for new product 120 <30 Target 120

  24. Concurrent Engineering © 2002 DRM Associates

  25. Concurrent Engineering • Role of CAD in Design & Manufacture • Model part or assembly being designed • Part visualised and manipulated on screen • Realistic • Function tested • Textures & lighting effects can be applied • Photorealistic effects • Manufacturing drawings generated automatically • Modelled part and its manufacturing requirements shared with the entire design and manufacturing team

  26. Concurrent Engineering • Role of CAD in Design & Manufacture • Geometry from CAD system used to produce part on CAM system • CAD model used by marketing to create images for packaging • Simulate behaviour of product under stresses and forces using CAE system • Model data used by rapid prototyping machine

  27. Concurrent Engineering • Role of CAD in Design & Manufacture • Advantages: • All above can be done concurrently • Manufacturing problems identified early • Changes in design can be seen immediately • Speeds up design and prototyping processes

  28. Concurrent Engineering • Design for the Environment • There are three major elements of design for the environment: • Design for environmental manufacturing • Design for environmental packaging • Design for disposal and recyclability.

  29. Concurrent Engineering • Design for Environmental Manufacturing: • Non-toxic processes & production materials • Minimum energy utilization • Minimize emissions • Minimize waste, scrap & by-products

  30. Concurrent Engineering • Design for Environmental Packaging: • Minimum of packaging materials • Reusable pallets and packaging  • Recyclable packaging materials • Bio-degradable packaging materials

  31. Concurrent Engineering • Design for Disposal & Recycling: • Re-use/refurbishment of components & assemblies • Material selection to enable re-use (e.g., thermoset plastics vs. thermoplastics) and minimize toxicity • Avoids filler material in plastics such as fibreglass and graphite • Minimum number of materials/colours to facilitate separating materials and re-use • Design for serviceability to minimize disposal of non-working products

  32. Concurrent Engineering • Design for Disposal & Recycling: • Material identification to facilitate re-use • Design to enable materials to be easily separated • Design for disassembly (e.g., fracture points, fastening vs. bonding) • Avoid use of adhesives • Limit contaminants - additives, coatings, metal plating of plastics, etc. • Maximize use of recycled or ground material with virgin material

  33. Concurrent Engineering • Impact of Product Life Cycle on the Environment • Product life cycle = design, manufacture, use & disposal stages of product • Minimise a products negative impact on the environment • Incorporate DfE considerations into design process of a new product

  34. Concurrent Engineering • Case study 1: Desktop computer • Design Stage: • The design could specify the following • Reusable components e.g. monitor, keyboard • Recycled materials where possible • Minimise toxic materials used • Manufacture: • Use ethical work practices and sources for raw materials • Use ‘clean’ manufacturing processes • Minimise transport of components and materials • Implement quality procedures to minimise waste etc. • Use: • Low power consumption • Serviceable items rather than replaceable e.g. disk drive, peripherals etc. • Disposal: • Design for disassembly – use easily dismantled fixings etc. • Identify materials used for recycling • Minimise mixed materials to facilitate separation later

  35. Concurrent Engineering • Role of Testing in Product Design • Cannot predict with absolute certainty how product will perform • Need test product before mass production • Mass production very costly to setup • Changes cannot be made easily • Speeds up design and prototyping processes

  36. Concurrent Engineering • Role of Testing in Product Design • Possible tests: • Product meets performance specifications • Expected life of product • Likely cause of failure Accelerated testing

  37. Concurrent Engineering Performance test: Pond Alarm

  38. Concurrent Engineering • Role of Accelerated Testing • Used when expected life is long to capture life data • Life data is needed to estimate the reliability of a product • Tests are conducted on a sample or prototype • Tests cause product to fail in same manner as normal use • Test time is greatly reduced • Product is quicker to market • Low development and warranty costs • Qualitative or Quantitative

  39. Concurrent Engineering • Qualitative Accelerated Tests • To reveal probable failure modes • Good tests quickly reveal failure modes • Improve design product • Performed on small number of samples • Product subjected to one severe level of stress • e.g. Stress cycling or hot to cold • Product intact – pass • Failure - action taken to eliminate cause of failure • Only tests conditions encountered in real use • Cannot be used to quantify life of product

  40. Concurrent Engineering • Quantitative Accelerated Life Tests • Quantify the life of the product • Controlled application of accelerated stress conditions to simulate product failure • Reduces the time-to-failure for a product • Data used to estimate reliability of product

  41. Concurrent Engineering Example: A washing machine to last for ten years in normal use. Expected typical household use: three times a week for a wash cycle that will last for 2 hours on average. What type of test should be used? How long must the machine survive during the test? Total hours life required for the machine is: 2 hours/wash x 3 washes/week x 52 weeks/year x 10 years = 3120 hours Use a quantitative accelerated test. Run the machine constantly for 3120 hours

  42. Concurrent Engineering • Sample Paper: HL • Explain why accelerated testing is used on some products. • Some products have a long life – need to test reliability • – quantify life of product - warranty • A washing machine will be used for two hours per day, three days per week in normal use. What type of accelerated testing will determine the lifetime of the washing machine? • Quantitative test – data is used to determine expected normal life time of product • During testing, the washing machine ran for 3000 operating hours before failing. Recommend a suitable guarantee period for the washing machine and give reasons for your recommendation. 2hrs/day x 3days/week = 6hrs/week 3000/6 = 566.67 weeks 566.67/52 = 10.8975 Guarantee period = 10 years.

More Related