1 / 48

PROJECT MANAGEMENT

PROJECT MANAGEMENT. By: Jonathan Daun Adriana Leon Adam Goplin. What is Project Management?. Project: Unique, one-time operation designed to accomplish a set of objectives in a limited time frame

candida
Télécharger la présentation

PROJECT MANAGEMENT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PROJECT MANAGEMENT By: Jonathan Daun Adriana Leon Adam Goplin

  2. What is Project Management? • Project: Unique, one-time operation designed to accomplish a set of objectives in a limited time frame • Examples: building a bridge, designing a new product, software development, implementing an ERP system

  3. How are projects different? • Projects differ from normal operations: • One time operation • Limited time horizon • Limited budget • Unique specifications • May work across organizational boundaries • Less bureaucratic

  4. Life Cycle of Projects • Project Definition • Planning • Implementation (Execution of Major Activities) • Project Phaseout

  5. Roles – Project Champion • Task of promoting and supporting a project • Usually a member of upper management with good communication skills • Solicits buy-in from other managers, particularly those who must concede resources to the project

  6. Roles – Project Team Members • Posses required knowledge and skill to complete tasks • Responsible for technical design, development, testing, and implementation of project • Must work well in team setting • Must have enthusiasm/buy-in to project

  7. Roles – Project Manager • Bears ultimate responsibility for success/failure of project • Leadership • Organization • Communication • Finance • Technical savvy • Team building/HR management

  8. Quality Cost Schedule Performance Objectives Project Management Triangle

  9. Work Breakdown Structure (WBS) • Hierarchical listing of tasks that must be accomplished for a project • Identifies required activities and major elements • Each major element is broken down into supporting activities and so on down

  10. WBS Example (Dwight Fischer)

  11. Selecting Projects • Limited resources means not all projects can be undertaken • Factors for selecting projects: • Budgets • Availability of expertise/skill • Cost-benefit analysis • Government mandates • Safety concerns

  12. Gantt Charts • Used to schedule and monitor project activities • Lists project activities, estimates of activity time length, and sequence of activities

  13. Pros/Cons of Working on Projects • Pros • Rewards associated with being part of successful project • Thrill of working on different/unusual tasks and solving new problems • Opportunities to meet new contacts & increase future job opportunities • Cons • Managers don’t want to lose good workers to projects • Disruption of daily routine • Risk of being replaced on current job • Fear of association with unsuccessful project

  14. Why Projects Fail • Unrealistic expectations • Lack of executive sponsorship • Lack of project management • Failure to align project with organizational objectives • Poor scope • Politics/conflicts

  15. What is pert? • Project Evaluation and Review Technique • Developed in 1958 by Navy • Used in the POLARIS missile program • Helps forecast project completion date • 1) How does the cost of work performed compare to the value of the work performed?  • 2) What is the value (in dollars) of work performed so far? • 3) How does the amount of money spent so far on a project compare to what should have been spent?

  16. PERT • PERT - a management tool for defining and integrating events; a process which must be accomplished in time to assure completing project objectives on schedule. • 3 basic factors influence project progress: • a) time • b) resources • c) technology

  17. PERT • Objectives: • To provide, through applying an integrated management information system (which contains a balanced combination of the basic elements of time, cost, and performance) • coordinate planning and control information at the proper levels so that timely managerial judgments will meet all established project objectives.

  18. PERT NETWORK • Events may be represented in a PERT network by any selected geometric figure (ovals, circles, squares). • The events must follow logically. The arrows indicate the flow in the PERT network and the numbers identify the events. The arrows and not the #’s indicate the order of events. Events that immediately follow one another are called successor events. Similarly, a predecessor event is one which immediately precedes another event.

  19. PERT NETWORK • Key features of a PERT network are: 1) Events must take place in a logical order. 2) Activities represent the time and the work it takes to get from one event to another. 3) No event can be considered reached until ALL activities leading to the event are completed. 4) No activity may be begun until the event preceding it has been reached.

  20. Steps: • Step 1: *Define tasks • Step 2: *Place tasks in a logical order, find the critical path • Critical path- longest time path through the task network which dictate finish date • Step 3: Generate estimates • Step 4: Determine earliest and latest dates • Step 5: Determine probability of meeting expected date *Don’t require calculations. Use logic.*

  21. Example: planting flowers & trees • Helpful to create a diagram:

  22. Calculating pert: steps 1&2 • Step 1: *Define tasks • Step 2: *Place tasks in a logical order, find the critical path *Don’t require calculations. Use logic.*

  23. Step 3: Generate estimates • Organize your estimates into a table • Calculate: • Most Optimistic (TO) – best case scenario • Most Likely (TL) “normal” scenario • Most Pessimistic (TP) Worst case scenario • Use PERT formula to calculate each scenario • (TO x 1 + TL x 4 + TP x 1) / 6 = TE sum of (optimistic x 1 + likely x 4 + pessimistic x 1) / by 6 = expected task duration • Group tasks on critical path separately • TE is earliest possible completion time

  24. Step 3a: get organized

  25. Step 3b: generate estimates • Calculate standard deviation • Standard deviation- average deviation from the estimated time • SD=(TP-T0)/6 • higher the SD is the greater amount of uncertainty exists • Calculate variance • reflects the spread of a value over a normal distribution • V=SD2 • a large variance indicates great uncertainty, a small variance indicates a more accurate estimate

  26. TE: Expected task duration • 1) For each TE cell: (TO*1+ TL*4+ TP*1)/6 • Use sum formula to add TE column.

  27. sd: standard deviation • Use excel formula: SD=(TP-T0)/6

  28. v:variance • Use Excel formula V=SD2 • Use sum formula for V column

  29. STEP 4: DATES • For each task, determine the latest allowable time for moving to the next task • Slack- difference between latest time and expected time • Tasks with zero slack time are on the critical path

  30. STEP 5: PROBABILITIES • Use Excel formula • =NORMDIST(x, mean, standard_dev, cumulative) • X  is the value for which you want the distribution (desired date) • Mean is the arithmetic mean of the distribution (summed PERT expected durations) • Standard_dev is the standard deviation of the distribution (square root of the summed variances) • Cumulative is a logical value that determines the form of the function. If cumulative is TRUE, NORMDIST returns the cumulative distribution function (probability of completion on the date entered)

  31. Pert in a nutshell: • 1) A management tool for defining and coordinating what must be done to accomplish a project’s objectives on time. These tasks were affected by our constructing a diagram of the PERT network. • 2) A technique that aids the manager but does not decide for him. He uses it to calculate variance, slack, probability, and time estimates. • 3) A technique that presents statistical knowledge about the uncertainties faced in completing the many activities associated with a project -- with it we calculated the expected task duration, variance, and probability. • 4) A method for attracting a manager’s attention to latent problems that require decisions and/or solutions. We used it to analyze the PERT network for critical paths and slacks. • 5) A method of attracting a manager’s attention to procedures for adjusting time, resources, or performance to meet target dates. He does so by analyzing the PERT network for areas of possible resource reallocation.

  32. CPM (CRITICAL PATH METHOD)KEY PM (PROJECT MANAGEMENT) TERMS • Critical Path: The longest path (time) through the task network. The series of tasks (or single task) that dictates the calculated finish date of the project (in other words, when the last task in the critical path is done the project is done). -If shortened, it will decrease overall project completion time. -Activities outside the CP would not effect overall PC time. • Slack Time: The amount of time a task can be delayed before the project finish date is delayed. -TS (Total Slack) can be either positive (+) or negative (-). -If Positive: indicates amount of time that the task can be delayed w/out delaying project finish date. -If Negative: indicates amount of time that must be saved so that the project finish date is not delayed. - TS = Latest Start – Earliest Start - A task w/ a TS = 0 is a Critical Task (  Float Time)

  33. CPM (CRITICAL PATH METHOD)KEY PM TERMS (CONT.) • Crashing:The shifting of resources to reduce slack time so the critical path is as short as possible. Always practice caution when crashing projects. -Results: Creates interference and increases project costs. • Dummy Activity: An imaginary activity w/ 0 duration. It is used to show either an indirect relationship between 2 tasks or to clarify the identities of the tasks. -In CPM, each activity must be uniquely defined by its beginning and ending points. -When two activities begin and end at the same time a dummy activity is put in place to tell them both apart. • Dependencies: Links between project tasks. 3 Types: 1- Casual: Where one task must be completed before another can begin. (Critical Path Schedules) 2- Resource: Where a task is limited by availability of resources. 3- Discretionary: Optional task sequence preferences may reflect organizational preferences. (not required) -Milestone: A significant task which represents a significant accomplishment within the project. (Special Attention/Control)

  34. CPM (CRITICAL PATH METHOD)KEY PM TERMS (CONT.) • Constraints: Restrictions set on the start/finish date of a task. You can specify that a task must start on/finish no later than a particular date. 2 Types: 1- Flexible: As soon as possible (ASAP) / as late as possible (ALAP) do not have specific times allocated. Setting these times enables you to begin tasks ASAP/ALAP w/ the task ending before the project finish. -Must take into consideration all other factors.) 2- Inflexible: Must start on (MSO) / must finish on (MFO) require an allocated date, which controls the time completion of a task. -External factors: -Availability of Eq./Resources -Deadlines -Contract Milestones -Start/Finish Dates • *Origin of CPM: introduced by US industry 1958 (DuPont Corporation/Remington-Rand)

  35. CPM (CRITICAL PATH METHOD)INTRODUCTION • Valuable Management Tool • Unlike PERT, analyzes only the longest likely chain of activities used to complete a project. - Earliest time a project can be completed when using the longest possible task durations. • Deterministic, not probabilistic (PERT) - Events are determined by preceding events, not by probability. -Deterministic (Time estimates that are fairly certain.) -Probabilistic (Estimates of times that allow for variation.) • Derives a “normal” completion time

  36. CPM (CRITICAL PATH METHOD)INTRODUCTION (CONT.) • “Unrealistic estimates = Unrealistic Plans.” - All plans are estimates and are only as good as the task estimates. • Adding tasks = Added Time & Cost. - If there are any additions/reductions in the overall project, the estimates must adapt to the change. • Expectation Control (Benefits) - Time estimates (likely) - How long will it take? - How long will it take if it needs to be done sooner? - Cost estimates - How much will it cost? - How much will it cost if it needs to be done sooner. - Time and Cost if crashed

  37. CPM (CRITICAL PATH METHOD)ANALYSIS FACTORS • Duration: The time it takes for an activity to be completed, given the planned amount of material, labor and equipment. • Effort: The amount (not time-oriented) of work required to finish the task. Duration may decrease by adding resources but the overall effort required will remain constant. • Scope: A specific definition of what the project does and does not entail. This is critical to the ever- changing project environment as well as managing the expectations of not only customers, but workers. • Resources: All available means utilized for the completion of the project. Such as equipment, employees, finances, etc.

  38. CPM (CRITICAL PATH METHOD)ASSUMPTIONS MADE BY CPM • Key concept used by both CPM/PERT -small set of activities make up the longest path, controlling the entire project. -these “critical” activities could be identified and managed with the optimum level of efficiency (personnel, resources, etc.) -Non-critical activities -Pareto Phenomenon

  39. CPM (CRITICAL PATH METHOD)ASSUMPTIONS MADE BY CPM (CONT.) • Other Assumptions: -Each task possesses a distinct start and finish point. -Each estimate can be mathematically calculated. -Tasks must be able to be arranged in a defined sequences that produces a pre-defined result. -Resources may be re-allocated as required per needs. -Cost & time have a direct relationship. -Time has 0 value.

  40. CPM (CRITICAL PATH METHOD)ASSUMPTIONS MADE BY CPM (CONT.) • “Crashing” Project Assumption: -CPM assumes projects may be crashed: • Finishing a task/project in a shorter amount of time using extra resources. -Impacts: -Shared Resources -Other Projects -Quality -Reliability

  41. CPM (CRITICAL PATH METHOD)COMPUTING ALGORITHMS (AOA) • Activity-on-Arrow Diagram Circles = Events Tail Event = Initial Event Arrows = Tasks Head Event = Final Event

  42. CPM (CRITICAL PATH METHOD)COMPUTING ALGORITHM (AOA) • Necessary Information: -ES, the earliest time activity can start, assuming all preceding activities start as early as possible. -EF, the earliest time the activity can finish. -LS, the latest time the activity can start and not delay the project. -LF, the latest time the activity can finish and not delay the project. • Used to Calculate: -Expected total project duration. -Slack time. (LS – ES or LF – EF) -The critical path.

  43. CPM (CRITICAL PATH METHOD)FORWARD AND BACKWARD PASS • Forward Pass: -For each path, start at the left side of the diagram and work toward the right side. -For each beginning activity: ES = 0. -For each activity: ES + Activity Time = EF -For the following activity: ES = EF of preceding activity. • Backward Pass: -For each path, start at the right side of the diagram and work toward the left side. -Use the largest EF as the LF for all ending activities. -For each activity: LS = LF – Activity Time. -For the preceding activity: LF = LS of following activity.

  44. Sources: • http://krypton.mnsu.edu/~tony/courses/609/PERT/tech.html • krypton.mnsu.edu/~tony/courses/609/PERT/pert2.ppt

More Related