1 / 35

Chapter 7 Cells

Chapter 7 Cells. 7.1 Life is Cellular, Pgs. 190-195 7.2 Cell Structure, Pgs. 196-207 7.3 Cell Transport, Pgs. 208-213 7.4 Homeostasis and Cells, Pgs. 214-217. 7.2 Lysosome Cytoskeleton Centriole Ribosome Endoplasmic reticulum Golgi apparatus Chloroplast Mitochondrion Cell Wall

carsyn
Télécharger la présentation

Chapter 7 Cells

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 7 Cells 7.1 Life is Cellular, Pgs. 190-195 7.2 Cell Structure, Pgs. 196-207 7.3 Cell Transport, Pgs. 208-213 7.4 Homeostasis and Cells, Pgs. 214-217

  2. 7.2 Lysosome Cytoskeleton Centriole Ribosome Endoplasmic reticulum Golgi apparatus Chloroplast Mitochondrion Cell Wall Lipid Bilayer Selectively permeable 7.3 Diffusion Facilitated diffusion Aquaporin Osmosis Isotonic Hypotonic Hypertonic Osmotic pressure 7.4 Homeostasis Tissue Organ Organ system receptor Chapter Vocabulary 7.1 Cell Cell Theory Cell Membrane Nucleus Eukaryote Prokaryote Cytoplasm Organelle Vacuole

  3. 7.1 Life is Cellular, Pgs. 190-195 Compound Light Microscopes and Cell Stains light microscopes can produce clear images of objects only to a magnification of about 1000 times. Most living cells are nearly transparent, making it difficult to see the structures within them. Using chemical stains or dyes can usually solve this problem. Some of these stains are so specific that they reveal only compounds or structures within the cell. f microscope Onion skin cells

  4. Light Microscopes and Cell Stains Human Cheek Cells  **Can you see the nucleus inside? You can also hook the microscope up to a video camera and either a computer or tv. See the link below for a video taken of a light microscope slide containing an amoeba (a single-celled organism). http://www.youtube.com/watch?v=7pR7TNzJ_pA&feature=related

  5. Electron Microscopes (SEM) In scanning electron microscopes, a pencil-like beam of electrons is scanned over the surface of a specimen. Because the image is of the surface, specimens viewed under a scanning electron microscope do not have to be cut into thin slices to be seen. Scanning electron microscopes produce three-dimensional images of the specimen’s surface. Cholera Bacteria Microbe

  6. Electron Microscopes (TEM) Transmission electron microscopes make it possible to explore cell structures and large protein molecules. Because beams of electrons can only pass through thin samples, cells and tissues must be cut first into ultra thin slices before they can be examined under a transmission electron microscope. Thus, electron microscopy can be used to examine only nonliving cells and tissues. Transmission electron microscopes produce flat, two-dimensional images. Mitochondrion from human lung

  7. Robert Hooke - First person to see cells, he was looking at cork and noted that he saw "a great many boxes. (1665) • Anton van Leeuwenhoek - Observed living cells in pond water, which he called "animalcules" (1673) Early Contributions Robert Hooke Anton van Leeuwenhoek Cork cells under The microscope

  8. Theodore Schwann- zoologist who observed tissues of animals had cells (1839) • MattiasSchleiden- botanist, observed tissues of plants contained cells ( 1845) • Rudolf Virchow - also reported that every living thing is made of up vital units, known as cells. He predicted that cells come from other cells. (1850 )

  9. 1. Every living organism is made of one or more cells. • 2. The cell is the basic unit of structure and function. It is the smallest unit that can perform life functions. • 3. All cells arise from pre-existing cells. The Cell Theory *Why is the Cell Theory called a Theory and not a Fact?

  10. ALL cell have these parts: • Ribosomes – make protein for use by the organism • Cytoplasm – fluid material within  cell • DNA – genetic material • Cytoskeleton – internal framework of cell • Cell Membrane – outer boundary, some things can cross the cell membrane Cell Features

  11. The first cells to inhabit the earth • Simple cells • Bacteria • These cells do NOT have a nucleus, their DNA is circular and floats in the cytoplasm Prokaryote Cells • Typical bacteria structure • Notice that there is nucleus inside.

  12. Cells found in plants, animals, protists, and fungi • 4 main parts: • Cell membrane • Cytoplasm • Nucleus • Organelles Eukaryotic Cells

  13. Section 7.2: Cell Structure, Pages 196-207 • Usually found at center of cell • Has a nuclear membrane & nuclear pores •  Contains cell’s DNA in one of 2 forms • chromatin - DNA bound to protein (non-dividing cell) • chromosomes - condensed structures seen in dividing cell • Also contains an organelle called nucleolus - which makes the cell’s ribosomes Nucleus

  14. Mitochondria – this is the cell’s energy center. It turns food into a chemical energy called ATP The mitochondria is sometimes called the “powerhouse” of the cell

  15. Golgi Apparatus – processes, packages and secretes proteins. It is comparable to a factory or a post office. *A vesicle forms with Golgi to transport substances outside cell.  

  16. Lysosome– Contains digestive enzymes, breaks things down, "suicide sac” Endoplasmic Reticulum– Transport, "intracellular highway".  -Rough ER contains many ribosomes & is involves in protein synthesis  -Smooth ERribosomes not found on surface

  17. Cytoskeleton – Helps cell maintain support & shape; movement a. microtubules-hollow structures; also help build cilia  flagella b.  microfilaments-threadlike c.  centrioloes-only in animal cells; used during cell division (paired)  Vacuole – storage area for water and other substaces, plant cells usually have a large central vacuole

  18. THE ANIMAL CELL

  19. THE PLANT CELL

  20. Plants have additional structures: • CELL WALL– surrounds membrane & provides additional support • CHLOROPLASTS – contain green pigment, function in photosynthesis • CENTRAL VACUOLE– large water container in center of cell Plant Cell Parts

  21. It is composed of a double layer of phospholipids with proteins embedded throughout CELL MEMBRANE http://www.youtube.com/watch?v=moPJkCbKjBs&feature=related

  22. Cell Membrane Composition An animal cell 1 A phospholipid 4 2 3

  23. Selective Permeability The cell membrane is selectively permeable. In fact, this is one of the most important properties of the membrane. What do you think selective permeability means? Maybe this picture will help. Plasma membrane of budding yeast stained with green fluorescent dye

  24. If you are still stuck, maybe this will helpThese objects are selectively permeable.

  25. 7.3 Cell Transport, Pgs. 208-213DiffussionThis is a type of passive transport because it does not use the cell’s energy (ATP). The process by which particles move from an area of high concentration to an area of lower concentration is known as diffusion. http://www.indiana.edu/~phys215/lecture/lecnotes/lecgraphics/diffusion.gif Diffusion is the driving force behind the movement of many substances across the cell membrane. http://www.youtube.com/watch?v=H7QsDs8ZRMI

  26. Diffusion Diffusion depends upon random particle movements. http://www.youtube.com/watch?v=s0p1ztrbXPY&feature=related http://www.youtube.com/watch?v=AYNwynwaALo&feature=related

  27. Facilitated Diffusion- An example is Osmosis No Energy Required!!!! Molecules that cannot directly diffuse across the membrane pass through special protein channels in a process known as facilitated diffusion. The movement of molecules by facilitated diffusion does not require any additional use of the cell’s energy. Can you see the channels in the membrane?

  28. Osmosis: An Example of Facilitated Diffusion Many cells contain water channel proteins, known as aquaporins, that allow water to pass right through them. Without aquaporins, water would diffuse in and out of cells very slowly. *** Osmosis is the diffusion of water through a selectively permeable membrane.

  29. Osmotic Pressure For organisms to survive, they must have a way to balance the intake and loss of water. The net movement of water out of or into a cell exerts a force known as osmotic pressure. Osmositic pressure causes water to move into or out of an egg http://www.youtube.com/watch?v=0c8acUE9Itw&feature=related http://www.youtube.com/watch?v=aeL6VL4cAmE&feature=related

  30. Osmotic Pressure Cells placed in an isotonic solution have the same concentration of solution inside and outside of the cell. The shape of the cell does not change when placed in isotonic solution. In a hypertonic solution, water rushes out of the cell, causing animal cells to shrink and plant cell vacuoles to collapse. • In a hypotonic solution, water rushes into the cell, causing cells to swell. Red Bood Cells in 3 Types of Media/Solutions Can you tell which solution is which?

  31. Active Transport- Requires Energy Cells sometimes must move materials against a concentration difference. The movement of material against a concentration difference is known as active transport. Active transport requires energy. http://www.youtube.com/watch?v=STzOiRqzzL4&NR=1

  32. Active Transport of Large Molecules Larger molecules and clumps of material can also be actively transported across the cell membrane by processes known as endocytosis and exocytosis. http://www.youtube.com/watch?v=4gLtk8Yc1Zc&feature=related http://www.youtube.com/watch?v=kfy92hdaAH0&feature=channel

  33. 7.4 Homeostasis and Cells Pages 214-217 The Cell as an Organism A single-celled, or unicellular, organism does everything you would expect a living thing to do. http://101science.com/paramecium.htm Just like other living things, unicellular organisms must achieve homeostasis, relatively constant internal physical and chemical conditions. To maintain homeostasis, unicellular organisms grow, respond to the environment, transform energy, and reproduce.

  34. Cell Specialization The cells of multicellular organisms are specialized, with different cell types playing different roles. Some cells are specialized to move, others to react to the environment, and still others to produce substances that the organism needs. No matter what the role, each specialized cell contributes to the overall homeostasis of the organism. • This bacteria is has specialized cilia to help it move. • What type of microscope was used here? How do you know? http://www.youtube.com/watch?v=9duvzqvVflw

  35. Cellular Communication Cells in a large organism communicate by means of chemical signals that are passed from one cell to another. These cellular signals can speed up or slow down the activities of the cells that receive them, • These cells are called neurons. They reach out and connect to other neurons so they can communicate with each other. http://www.youtube.com/watch?v=ONljvPh1ykY&feature=related

More Related