570 likes | 789 Vues
LSO - from Discovery to Commercial Development. C. L. Melcher CTI, Inc. Knoxville, TN, USA. Acknowledgments. Schlumberger-Doll Research, Ridgefield J. S. Schweitzer, R. A. Manente, C. A. Peterson California Institute of Technology, Pasadena T. A. Tombrello, H. Suzuki LETI, Grenoble
E N D
LSO - from Discovery to Commercial Development C. L. Melcher CTI, Inc. Knoxville, TN, USA
Acknowledgments • Schlumberger-Doll Research, Ridgefield • J. S. Schweitzer, R. A. Manente, C. A. Peterson • California Institute of Technology, Pasadena • T. A. Tombrello, H. Suzuki • LETI, Grenoble • J. J. Aubert, Ch. Wyon • CTI, Inc., Knoxville • R. Nutt, M. Andreaco • St. Petersburg State Technical University, St. Petersburg • P. A. Rodnyi and co-workers • Institute of Single Crystals, Kharkov • B. Minkov, M. V. Korzhik, and co-workers • Ural State Technical University, Ekaterinburg • B. V. Shulgin and co-workers Calor 2002
Properties of the ideal scintillator • High light output • Fast decay time • High density • High atomic number • Good energy resolution • Suitable emission wavelength • Good mechanical strength • Non-hygroscopic • Practical crystal growth • Low cost Calor 2002
Search strategy for new scintillators • Identify suitable luminescent center • Suitable emission wavelength • High transition probability • Compatible with host material • Identify candidates for host material • High density • High atomic number • Transparent • Non-hygroscopic • Practical crystal growth • Synthesize candidates • Solid state synthesis by sintering powders • Characterize scintillation properties • Single crystal growth Calor 2002
Powder synthesis of candidate materials Calor 2002
Ce3+ activators • 4f – 5d transition • Allowed dipole transition • Typically high quantum efficiency • Typically 20-60 ns decay time • Emission wavelength usually 350 –450 nm depending on crystal field of host; e.g. GSO:Ce, BaF2:Ce, CeF3 Calor 2002
Ln2SiO5 host materials “Growth of lanthanide oxyorthosilicate single crystals and their structural and optical characteristics,” G. V. Anan’eva, A. M. Korovkin, T. I. Merkulyaeva, A. M. Morozova, M. V. Petrov, I. R. Savinova, V. R. Startsev, and P. P. Feofilov, Akademii Nauk SSSR, Izvestiya, Seriya Neorganicheskie Materialy, V 17, N 6, p. 754-8, June 1981. • Czochralski crystal growth of Ln2SiO5, Ln = Y, Gd-Lu • Crystal structure • Physical characteristics • Melting point • Density • Refractive Index • Doping with Nd3+, Ho3+, Er3+, Tm3+, Yb3+ Calor 2002
Early papers • Melcher, U.S. Patent No. 4,958,080 (1990) • Melcher and Schweitzer, IEEE Conf. Rec. (1991) • Rodnyi (1992) • Minkov, Functional Materials (1994) • Shulgin et al. (1990) • Melcher and Schweitzer, IEEE Trans. Nucl. Sci. (1992) • Melcher and Schweitzer, Nucl. Instr. Meth. (1992) Calor 2002
Crystal structure vs. RE radius Calor 2002
Crystal structure: Lu2SiO5 (LSO) Monoclinic C Space group C2/c Lattice constants a = 14.254 Å b = 6.641 Å c = 10.241 Å b = 122.2º Calor 2002
Crystal growth – practical requirements • Congruent melting (solid and liquid have same composition in equilibrium) • Reasonable melting point (compatible with crucible and furnace materials) • Mechanically strong material • Reasonable distribution coefficient for dopant Calor 2002
Czochralski growth of single crystals Pull ~ 1 mm/hr Rotation ~5 rpm Seed crystal Iridium crucible Crystal melt Induction heater Insulation Calor 2002
Czochralski growth of single crystal LSO 2070oC Calor 2002
Transmission of pure and Ce-doped LSO Calor 2002
Low temperature (11K) excitation spectra Calor 2002
Low temperature (11K) emission spectra Calor 2002
Ce1 + Ce2 = gamma ray emission Calor 2002
Pulse height spectrum of 137Cs Calor 2002
Coincidence resolving time (511 keV) Calor 2002
Intrinsic background radiation • 2.6% of naturally occurring Lu is Lu-176 • Beta decay with primary gamma rays of 88, 202, 307 keV • Count-rate from Lu-176 • 0 – 1000 keV: 40 counts/sec/g Calor 2002
Scintillation efficiency* h = bSQ * Lempicki et al., Nucl. Instr. Meth. A333, 304-311 (1994) Calor 2002
Scintillator properties Calor 2002
Photon interaction cross sections Calor 2002
Emission spectra at room temperature Calor 2002
Scintillation decay times Calor 2002
Coincidence resolving time Calor 2002
Commercialization issues • Raw materials • Availability of large quantities • Low cost • Recycling of scrap • Factory • Low cost growth stations • Reliable electrical power • Cooling water system • Growth control system • Detector processing Calor 2002
Abundance of Lu Element Abundance (ppmw) Lu 0.8 I 0.45 Tl 0.85 Cd 0.15 W 1.25 Bi 0.009 Ge 1.5 Hg 0.085 Calor 2002
Raw materials Lu2O3 Calor 2002
LSO factory Calor 2002
Electrical power Battery backup Dual electrical service (3 MW) Calor 2002
Cooling water system 1000 gpm Calor 2002
Cooling towers Calor 2002
Nitrogen supply Calor 2002
Crystal boules Calor 2002
LSO production boules Picture of 50 boules Calor 2002
Light output of all LSO crystals - 2002 Calor 2002
Energy resolution of all LSO crystals - 2002 Calor 2002
LSO decay time Calor 2002
Light output uniformity within a boule Calor 2002
Energy resolution uniformity within a boule Calor 2002
Decay time uniformity within a boule Calor 2002
Detector processing Calor 2002
Detector processing – Ultraviolet light cures adhesive Calor 2002
Detector with PMTs Calor 2002
LBNL PET detector modules • PD Array Identifies Crystal of Interaction • PMT Provides Timing Pulse and Energy Discrimination • PD+PMT Measures Energy Deposit • PD / (PD+PMT) Measures Depth of Interaction 1” square PMT PD array 64 element LSO array Custom IC Calor 2002 Courtesy of W. W. Moses, LBNL - CFI
UCLA Calor 2002 Courtesy of UCLA Crump Institute