220 likes | 246 Vues
Explore the ICARUS project, utilizing liquid Argon technology for particle trajectory detection. Key goals include constructing a 3000-ton experiment underground for neutrino physics and studying matter stability.
E N D
Background leading to the requirements for a study André Rubbia, ETH Zürich January, 2004
The ICARUS collaboration(25 institutes, ≈150 physicists) M. Aguilar-Benitez, S. Amoruso, Yu. Andreew, P. Aprili, F. Arneodo, B. Babussinov, B. Badelek, A. Badertscher, M. Baldo-Ceolin, G. Battistoni, B. Bekman, P. Benetti, E. Bernardini, A. Borio di Tigliole, M. Bischofberger, R. Brunetti, R. Bruzzese, A. Bueno, C. Burgos, E. Calligarich, D. Cavalli, F. Cavanna, F. Carbonara, P. Cennini, S. Centro, M. Cerrada, A. Cesana, R. Chandrasekharan, C. Chen, D. B. Chen, Y. Chen, R. Cid, D. Cline, P. Crivelli, A.G. Cocco, A. Dabrowska, Z. Dai, M. Daniel, M. Daszkiewicz, C. De Vecchi, A. Di Cicco, R. Dolfini, A. Ereditato, M. Felcini, A. Ferrari, F. Ferri, G. Fiorillo, M.C. Fouz, S. Galli, D. Garcia, Y. Ge, D. Gibin, A. Gigli Berzolari, I. Gil-Botella, S.N. Gninenko, N. Goloubev, A. Guglielmi, K. Graczyk, L. Grandi, K. He, J. Holeczek, X. Huang, C. Juszczak, D. Kielczewska, M. Kirsanov, J. Kisiel, L. Knecht, T. Kozlowski, H. Kuna-Ciskal, N. Krasnikov, P. Ladron de Guevara, M. Laffranchi, J. Lagoda, Z. Li, B. Lisowski, F. Lu, J. Ma, N. Makrouchina, G. Mangano, G. Mannocchi, M. Markiewicz, A. Martinez de la Osa, V. Matveev, C. Matthey, F. Mauri, D. Mazza, A. Melgarejo, G. Meng, A. Meregaglia, M. Messina, C. Montanari, S. Muraro, G. Natterer, S. Navas-Concha, M. Nicoletto, G. Nurzia, C. Osuna, S. Otwinowski, Q. Ouyang, O. Palamara, D. Pascoli, L. Periale, G. Piano Mortari, A. Piazzoli, P. Picchi, F. Pietropaolo, W. Polchlopek, T. Rancati, A. Rappoldi, G.L. Raselli, J. Rico, L. Romero, E. Rondio, M. Rossella, A. Rubbia, C. Rubbia, P. Sala, N. Santorelli, D. Scannicchio, E. Segreto, Y. Seo, F. Sergiampietri, J. Sobczyk, N. Spinelli, J. Stepaniak, M. Stodulski, M. Szarska, M. Szeptycka, M. Szeleper, M. Terrani, R. Velotta, S. Ventura, C. Vignoli, H. Wang, X. Wang, C. Willmott, M. Wojcik, J. Woo, G. Xu, Z. Xu, X. Yang, A. Zalewska, J. Zalipska, C. Zhang, Q. Zhang, S. Zhen, W. Zipper. ITALY: L'Aquila, LNF, LNGS, Milano, Napoli, Padova, Pavia, Pisa, CNR Torino, Torino Univ., Politec. Milano. SWITZERLAND: ETH/Zürich. CHINA: Academia Sinica Beijing. POLAND: Univ. of Silesia Katowice, Univ. of Mining and Metallurgy Krakow, Inst. of Nucl. Phys. Krakow, Jagellonian Univ. Krakow, Univ. of Technology Krakow, A.Soltan Inst. for Nucl. Studies Warszawa, Warsaw Univ., Wroclaw Univ. USA: UCLA Los Angeles. SPAIN: Univ. of Granada, CIEMAT RUSSIA: INR (Moscow)
The ICARUS project • Based on the liquid Argon time projection chamber technology (originally developed at CERN and supported by the Italian Institute for Nuclear Research (INFN) over many years of R&D) • Now a mature technology to detect with unprecedented quality the trajectories of elementary particles • Biggest achievement: • Construction of a fully instrumented 600 ton liquid argon experiment and operation on surface • Plan: • To install and operate a 3000 tons of liquid argon experiment underground at the LNGS (National Laboratory of Gran Sasso) near Rome, Italy
176 cm 434 cm Cosmic ray interactions with ICARUS 600 ton Shower 25 cm 85 cm 265 cm 142 cm Muon decay Hadronic interaction Run 960, Event 4 Collection Left Run 308, Event 160 Collection Left
A 100 kton liquid argon underground observatory for neutrino physics and test of matter stability
Astrophysical neutrinos Solar En ≈ 10 MeV Supernova En ≈ 30 MeV Atmospheric En ≈ 1 GeV
Artificial neutrinos SPS Decay Ring PS Select focusing sign Superbeams b-beams Select ion Select ring sign
Matter stability 100 kton = 6x1034 nucleons Do they live “forever” ?
Concept: 100 kton liquid Argon detector Electronic crates f≈70 m h =20 m Insulation
Open detector Gas Argon Liquid Argon Drift
Detector schematic layout Charge readout plane GAr E ≈ 3 kV/cm LAr Electronic racks Extraction grid E-field E≈ 1 kV/cm UV & visible light readout PMT + race track Cathode (–2MV) (Not to scale)
The “dedicated” cryogenic complex Electricity Air Hot GAr W Underground complex GAr LAr Q External complex Joule-Thompson expansion valve Heat exchanger Argon purification LN2, …
Feasibility: storage tank • Underground storage of large quantity of liquid Argon at cryogenic temperature • Vacuum technology (external impurity tightness) • “Clean” internal materials (e.g. SS, surface treated) • Radiopurity of materials employed
Undergound construction strategy • Tunnel access • E.g. Fréjus • Mine access • E.g. Polish site • Problem of space logistics • Safety
Operation • LAr level constant (refilling) • LAr purity (continuous recirculation) • Emptying? • Safety
Feasibility: Instrumentation • Internal mechanics (our instrumentation) • Internal-external UHV cold-hot interface
Feasibility: Financing & time • Cost (order of magnitude) • Construction timescale
Outlook • Presentation of polish site • W. Pytel • Presentation of Fréjus site • L. Mosca • Discussion on how to proceed