Download
high precision indoor localization using spinning beacons n.
Skip this Video
Loading SlideShow in 5 Seconds..
High-Precision Indoor Localization Using Spinning Beacons PowerPoint Presentation
Download Presentation
High-Precision Indoor Localization Using Spinning Beacons

High-Precision Indoor Localization Using Spinning Beacons

155 Vues Download Presentation
Télécharger la présentation

High-Precision Indoor Localization Using Spinning Beacons

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. High-Precision Indoor Localization Using Spinning Beacons Presenter Ho-lin Chang

  2. Outline Introduction Design Implementation Evaluation Conclusion and future Work

  3. Introduction- Motivation Warehouse Security Healthcare Indoor location-based service

  4. Introduction – Related work WiFi UWB Ultrasound • Existed indoor localization technique • UWB • Ultrasound • WiFi

  5. Introduction – Related work • UWB (Ubisense) • Accuracy: 10 ~ 20 cm • Time difference of arrival • Expensive specialized hardware (10,000 USD)

  6. Introduction – Related work • Ultrasonic (Cricket) • Accuracy: 10 ~ 20 cm • Short range • Non-line of sight problem

  7. Introduction – Related work • WiFi (Ekahau, RADAR) • RSS fingerprinting • Accuracy: 3 ~ 5m • Low cost • Offline training

  8. Introduction– Indoor localization

  9. Introduction – Contribution • Develop a novel localization system • Spinning beacon (RF) • Indoor environment • Sub-meter accuracy • 50%< 39 cm • 90%< 70 cm • Low cost • Low cost motes (100 USD) • Rotation motor

  10. Design

  11. Doppler Angulation Doppler Angulation 2nd Doppler Angulation 3rd Doppler Angulation S S X S X R Localization The location of X

  12. Design – Doppler Effect X f S vproject v

  13. Design – When the beacon spins … Δf = 0 Hz Δf = -30 Hz Δf = 30 Hz Δf = 0 Hz X -30Hz 0Hz 0Hz v S 30Hz frequency Δf (t) = ? time

  14. Design – Model the frequency waveform v(t) = (-ωr sinθ, ωr cosθ) y S : (r cosθ, r sinθ) X : (d cosα, d sinα) X d α r v(t) θ(t) = ωt+φ x S

  15. Design – Doppler angulation y X α v(t) R β x S

  16. System overview

  17. Doppler Angulation Frequency observation 2nd Doppler Angulation S S 3rd Doppler Angulation X S X Time delay estimation R Localization centroid The location of X

  18. Typical RF frequency is too high. • Radio Interferometry • “Radio InterferometricGeolocation” • [sensys ‘05] Doppler Angulation Frequency observation 2nd Doppler Angulation 3rd Doppler Angulation Time delay estimation 900 MHz B A 900 MHz + 500 Hz Localization centroid 500 Hz The location of X

  19. Delay-and-compare method Doppler Angulation Frequency observation 2nd Doppler Angulation 3rd Doppler Angulation Time delay estimation Localization centroid The location of X

  20. Implementation • Software • TinyOS 1.x • C/C++ • Hardware • Crossbow MICA2 • Rotational motor

  21. Evaluation • Testbed • 國發所地下室停車場 • Three spinning beacons • 30 sample points (2m grid) • 10 position samples (300 samples) • 3 angles (900 angles) • Evaluation metrics • Positional error • Angular error • ParameterTuning

  22. Evaluation – Angular accuracy 90% < 10 degrees 90% < 10 degrees 50% < 3 degrees 50% < 3 degrees

  23. Evaluation – Positional accuracy 90% < 70cm 90% < 10 degrees 50% < 3 degrees 50% < 39cm

  24. Evaluation – Parameter tuning • Data collection time • Rotational velocity • Interference frequency • Angulation filtering threshold • Minimumdistanceasaqualityindicator

  25. Evaluation– Data collection time

  26. Evaluation – Rotational velocity

  27. Evaluation – Interference frequency Lower frequency estimation precision

  28. Evaluation– Filtering threshold

  29. System Limitation Track fast moving targets Rotational device

  30. Conclusion • Develop a novel localization system • Spinning beacon • Indoor environment • Low cost • Sub-meter accuracy • 39cm / 70cm

  31. Future Work • Reduce the localization latency • Reduce the routing time • Distributed version • Data compression • Track the fast moving targets

  32. Q&A

  33. Thanks

  34. Design – Approximation r/d 0 0.1 0.3 0.5

  35. Frequency waveform approximation

  36. Time delay estimation k

  37. Radio interferometry fA |fA + ΔfX - fB| |fA-fB| v X A B fB

  38. Real Deployment S S A S R

  39. Signal strength Time

  40. FDOA (Frequency Difference of Arrival) I I I v X I I I • Each infrastructure perceives different Doppler shift. • Localize the target by different Doppler shifts

  41. Maximum Doppler shift • f : 900 MHz • ω :2.5round/sec • r : 30 cm ~ 50 cm

  42. Localization latency 0.3 ~ 1.5sec 8 ~ 10 sec 1st Doppler angulation Data collection Routing 2nd Doppler angulation Data collection Routing 3rd Doppler angulation Data collection Routing Localization Localization

  43. Design – Model the frequency waveform v(t) = (-ωr sinθ, ωr cosθ, 0) y S : (r cosθ, r sinθ, 0) X : (d cosα, d sinα, h) X d α r v(t) θ(t) = ωt+φ x S