EQUILIBRIUM OF RIGID BODIES KESETIMBANGAN BENDA TEGAR

# EQUILIBRIUM OF RIGID BODIES KESETIMBANGAN BENDA TEGAR

## EQUILIBRIUM OF RIGID BODIES KESETIMBANGAN BENDA TEGAR

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
##### Presentation Transcript

1. EQUILIBRIUM OF RIGID BODIES KESETIMBANGAN BENDA TEGAR roghibin's blog

2. Equilibrium Of POINT ( Kesetimbangan Titik) Base on object of Equilibrium Equilibrium of Rigid Bodies ( Kesetm. Benda Tegar) roghibin's blog

3. Equilibrium Of POINT( Kesetimbangan Titik) T1 T2 • Syarat Setimbang: • Σ Fx = 0 • Σ Fy = 0 Point W roghibin's blog

4. T1 T2 Point W Equilibrium Of POINT( Kesetimbangan Titik) T1 sinα Σ Fx = 0 T1 cos α- T2 cos β = 0 Σ Fy = 0 T1 sinα + T2 sinβ – W = 0 T2 sinβ β T1 cos α α T2 cos β roghibin's blog

5. Ditermine tension of each string T1 , T2 and T3 ! Example 60o 30o T3 T2 T1 5 Kg roghibin's blog

6. Answer T1 = W = m.g = 50 N T3 sin60o T2 T3 Σ Fx = 0 T2 sin30o T2 cos 30o - T3 cos60o = 0 T2 ½ = T3 ½ T3 = T2 60o 30o T2 cos 30o T3 cos60o Σ Fy = 0 T2 sin30o + T3 sin60o – W = 0 T2 ½ + T3 ½ = 50 T2 + T3 = 100 T2+T2.3=100 4 T2=100 T2= 25 N T1 T3= 25 N roghibin's blog

7. Shortcut Formula T2 T1 α3 α1 α2 Notes : Di kwadran 2 berlaku : Sin ( 180 – α ) = sin α T3 roghibin's blog

8. Ditermine tension of each string T1 , T2 and T3 ! Example 60o 30o T3 T2 T1 5 Kg roghibin's blog

9. Answer 60o 30o T3 90o T2 150o 120o T1 5 Kg T1 = W = 50 N roghibin's blog

10. Moment Of Force F l sinα α poros α l F F sinα roghibin's blog

11. Moment of Force is Vector + As clockwise _ Anti clockwise roghibin's blog

12. roghibin's blog

13. roghibin's blog

14. roghibin's blog

15. roghibin's blog

16. EquilibriumOf Rigid Bodies Prerequisite Of Equilibrium of Rigid Bodies roghibin's blog

17. Example No: 1 A B O 2m X = ? 60 kg 100 kg To becomes equilibrium condition, so where are B object must be placed from O ?  X = ? roghibin's blog

18. N O 2m X = ? WB=600N wA = 1000N WB.x – WA.2=0 600x – 1000.2 =0 600x = 2000 X = 2000/600 X = 3,3 m N – WA – WB =0 N – 1000 -600 =0 N = 1600 N roghibin's blog

19. Dua orang A dan B ingin membawa beban 1200 N dengan menggunakan batang homogen yang masanya dapat diabaikan. Panjang batang 4 meter. Dimanakah beban harus diletakkan ( diukur dari B ) agar B menderita gaya 2 kali dari A. B A roghibin's blog

20. NB NA 4m NA+NB-w=0 NA+NB=1200 NA+2NA=1200 3NA = 1200 NA= 400 N NB= 800 N X=? (4-x) 1200N NA.(4-X)-NB.X=0 400(4-X)-800X=0 1600-400X-800X=0 1600-1200X=0 1600=1200X X= 1,33 m NB = 2 NA B A roghibin's blog

21. From the following picture, how far C must be placed from B so that equilibrium system ! mA = 80 kg mB = 30 Kg mC = 20 kg AO = 1,5 m OB = 1,2 m B C A X =? o roghibin's blog

22. B C A X =? N N – 800 – 300 – 200 = 0 N = 1300 N Poros O 1,5m 1,2m o 300.1,2 + 200(1,2+x)-800.1,5 = 0 360+240+200x=1200 300N 200N 600 + 200 x = 1200 800N 200 x = 600 X = 600/200 X = 3 meter roghibin's blog

23. WEIGHT POINT ( X1, Y1) ( X3, Y3) ( Xo, Yo) W3 W1 ( X4, Y4) W2 W4 W ( X2, Y2) roghibin's blog

24. ( Xo, Yo) ( X1, Y1) ( X3, Y3) W W3 W1 ( X4, Y4) W2 W4 ( X2, Y2) W.Xo = w1.x1+ w2.x2 + w3.x3 + w4.x4 W = w1 + w2 + w3 + w4 Xo = w1.x1+ w2.x2 + w3.x3 + w4.x4 w1 + w2 + w3 + w4 W.Yo = w1.y1+ w2.y2 + w3.y3 + w4.y4 Yo = w1.y1+ w2.y2 + w3.y3 + w4.y4 w1 + w2 + w3 + w4 roghibin's blog

25. If we concern about AREA Xo = A1.x1+ A2.x2 + A3.x3 + A4.x4 A1 + A2 + A3 + A4 Yo = A1.y1+ A2.y2 + A3.y3 + A4.y4 A1 + A2 + A3 + A4 roghibin's blog

26. If we concern about VOLUME Xo = V1.x1+ V2.x2 + V3.x3 + V4.x4 V1 + V2 + V3 + V4 Yo = V1.y1+ V2.y2 + V3.y3 + V4.y4 V1 + V2 + V3 + V4 roghibin's blog

27. If we concern about LENGTH Xo = l1.x1+ l2.x2 + l3.x3 + l4.x4 l1 + l2 + l3 + l4 Yo = l1.y1+ l2.y2 + l3.y3 + l4.y4 l1 + l2 + l3 + l4 roghibin's blog

28. Example : 1 Determine the coordinate of weight point, from following area object ! 10 3 2 6 roghibin's blog

29. answer y 20 1 , 5 10 12 4 , 1,5 (1,5) (4,1 ½ ) A1.x1+ A2.x2 A1 + A2 Xo = 3 = 20.1+12.4 20+12 = 68 32 = 2,125 x 2 6 A1.y1+ A2.y2 A1 + A2 = 118 32 yo = = 20.5 + 12.1,5 20 + 12 = 100 + 18 32 = 3, 688 roghibin's blog

30. Example : 2 Determine the coordinate of weight point, from following volume object ! 2R 2R 2R roghibin's blog

31. Answer : y 2πR3 0, R 2R -2/3πR3 0, 3/8R 2/3πR3 2R 0, ½ R x 2R roghibin's blog

32. Xo = V1.x1+ V2.x2 + V3.x3 V1 + V2 + V3 XO= 0 Yo = V1.y1+ V2.y2 + V3.y3 V1 + V2 + V3 roghibin's blog