1 / 35

Computer Simulation Lab

Computer Simulation Lab. “Lecture 4”. Electrical and Computer Engineering Department SUNY – New Paltz. Logical vectors. objectives L ogical operators Logical vectors Logical functions. Logical Operators. r = 0; r <= 0.5 ans= 1. r = .5; r <= 0.5 ans= 1. r = 1; r <= 0.5 ans= 0.

clarke
Télécharger la présentation

Computer Simulation Lab

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Computer Simulation Lab “Lecture 4” Electrical and Computer Engineering Department SUNY – New Paltz SUNY-New Paltz

  2. Logical vectors objectives • Logical operators • Logical vectors • Logical functions SUNY-New Paltz

  3. Logical Operators r = 0; r <= 0.5 ans= 1 r = .5; r <= 0.5 ans= 1 r = 1; r <= 0.5 ans= 0 r = 1:5; r <= 3 ans= 1 1 1 0 0 a = 1:5; b = [0 2 3 5 6]; a == b ans= 0 1 1 0 0 SUNY-New Paltz

  4. Application of Logical Vectors 1-form vector 0<x<3*pi 2- form a vector such that if y > 0 then it is one Multiply y by this vector x = 0 : pi/20 : 3 * pi; y = sin(x); y = y .* (y > 0); plot(x, y) SUNY-New Paltz

  5. Avoiding Division by Zero 1-form vector x -4*pi <x< 4*pi 2- form a new vector x such that if x=0, then it is eps 3- Divide sin(x) by this vector x = -4*pi : pi/20 : 4*pi; x = x + (x == 0)*eps; y = sin(x) ./ x; plot(x, y) Sin(ε)/ε=1 SUNY-New Paltz

  6. Logical Operators SUNY-New Paltz

  7. Operator Precedence SUNY-New Paltz

  8. Be Careful! 0 < r < 1Wrong! (0 < r) & (r < 1) Correct! SUNY-New Paltz

  9. Subscripting with logical vectors a = [-2 0 1 5 9]; a([5 1 3]) ans: 9 -2 1 a(logical([0 1 0 1 0])) ans: 0 5 a = a(a > 0) ans: 1 5 9 SUNY-New Paltz

  10. Verifying Logical Vectors a = [ 1 –1 2 0 3] b= a > 0 islogical(a) ans: 0 islogical(b) ans: 1 SUNY-New Paltz

  11. Logical functions any(x) all(x) exist(’a’) find(x) returns the scalar 1 (true) if any element of x is non-zero (true). returns the scalar 1 if all the elements of x are non-zero. returns 1 if a is a workspace variable. returns a vector containing the subscripts of the non-zero (true) elements of x SUNY-New Paltz

  12. Examples a=[0 2 1 2 3 4] a = a( find(a) ) x = [8 1 -4 8 6]; find(x >= max(x)) SUNY-New Paltz

  13. Logical functions isempty(x) isinf(x) isnan(x) returns 1 if x is an empty array and 0 otherwise. returns 1’s for the elements of x which are +Inf or −Inf, and 0’s otherwise returns 1’s where the elements of x are NaN and 0’s otherwise. Example: x(isnan(x)) = [ ] SUNY-New Paltz

  14. Using ‘any’ and ‘all’ if any(a ~= b) statement end if a ~= b statement end if all(a >= 1) do something end SUNY-New Paltz

  15. Logical vectors instead of ‘elseif’ ladders SUNY-New Paltz

  16. Matlab Code Using if/elseif inc =[5000 10000 15000 30000 50000]; for ti = inc if ti < 10000 tax = 0.1 * ti; elseif ti < 20000 tax = 1000 + 0.2 * (ti - 10000); else tax = 3000 + 0.5 * (ti - 20000); end; disp( [ti tax] ) end; SUNY-New Paltz

  17. Logical Way inc = [5000 10000 15000 30000 50000]; tax = 0.1 * inc .* (inc <= 10000); tax = tax+(inc > 10000 & inc <= 20000) ... .* (0.2 * (inc-10000) + 1000); tax = tax + (inc > 20000) .* (0.5*(inc-20000)+ 3000); disp( [inc’ tax’] ); SUNY-New Paltz

  18. Matrices Objectives •ways of creating and manipulating matrices; •matrix operations. SUNY-New Paltz

  19. Creating matrices a = [1 2; 3 4]; x = [5 6]; a = [a; x] b = a’ b= 1 3 5 2 4 6 a = 1 2 3 4 5 6 SUNY-New Paltz

  20. Subscripts a = 1 2 3 4 5 6 7 8 9 x = [0:30:180]’; trig(:,1) = x; trig(:,2) = sin(pi/180*x); trig(:,3) = cos(pi/180*x); a(3,3) a(2:3,1:2) a(3,:) a(1:2,2:3) = ones(2) trig = 0 0 1.0000 30.0000 0.5000 0.8660 60.0000 0.8660 0.5000 90.0000 1.0000 0.0000 120.0000 0.8660 -0.5000 150.0000 0.5000 -0.8660 180.0000 0.0000 -1.0000 SUNY-New Paltz

  21. ‘:’ Operator b = 1 2 3 4 5 6 a = 0 0 0 0 0 0 a(:) = b a = 1 2 3 4 b = a(:) b= 1 2 3 4 a = 1 5 4 3 2 6 SUNY-New Paltz

  22. Duplicating rows and columns: tiling a = 1 2 3 repmat(a, [3 1]) or repmat(a, 3, 1) ans = 1 2 3 1 2 3 1 2 3 SUNY-New Paltz

  23. Exercise 1 2 3 1 2 3 1 2 3 4 5 6 4 5 6 4 5 6 1 2 3 1 2 3 1 2 3 4 5 6 4 5 6 4 5 6 1 2 3 1 2 3 1 2 3 4 5 6 4 5 6 4 5 6 1 3 5 7 9 11 13 15 17 19 10 9 8 7 6 5 4 3 2 1 1 3 5 7 9 11 13 15 17 19 10 9 8 7 6 5 4 3 2 1 1 3 5 7 9 11 13 15 17 19 10 9 8 7 6 5 4 3 2 1 1 3 5 7 9 11 13 15 17 19 10 9 8 7 6 5 4 3 2 1 4 3 4 3 4 3 1 2 1 2 1 2 4 3 4 3 4 3 1 2 1 2 1 2 SUNY-New Paltz

  24. Deleting rows and columns a = 1 2 3 4 5 6 7 8 9 a(:,2) = [ ] a(1,2) = [ ] a(2:2:6) = [ ] a(:, logical([1 0 1])) ans = 1 3 4 6 7 9 a = 1 7 5 3 6 9 SUNY-New Paltz

  25. Elementary matrices eye(3) ans = 1 0 0 0 1 0 0 0 1 pascal(4) ans = 1 1 1 1 1 2 3 4 1 3 6 10 1 4 10 20 SUNY-New Paltz

  26. Generating Specialized Matrices compan - Companion matrix. gallery - Higham test matrices. hadamard - Hadamard matrix. hankel - Hankel matrix. hilb - Hilbert matrix. invhilb - Inverse Hilbert matrix. magic - Magic square. pascal - Pascal matrix. rosser - Classic symmetric eigenvalue toeplitz - Toeplitz matrix. vander - Vandermonde matrix. wilkinson - Wilkinson's eigenvalue test matrix. SUNY-New Paltz

  27. Using MATLAB functions with matrices a = 1 0 1 1 1 1 0 0 1 all(a) any(a) 0 0 1 1 1 1 SUNY-New Paltz

  28. Manipulating matrices diag fliplr flipud rot90 tril extracts or creates a diagonal. flips from left to right. flips from top to bottom. Rotate 90 egrees Extract Lower Triangle SUNY-New Paltz

  29. Array (element-by-element) operations on matrices a = 1 2 3 4 5 6 a .^ 2 ans = 1 4 9 16 25 36 a = 1 2 3 4 5 6 7 8 9 for v = a disp(v’) end 1 4 7 2 5 8 3 6 9 SUNY-New Paltz

  30. Visualization of matrices A = 1000; % amount borrowed n = 12; % number of payments per year for r = 0.1 : 0.01 : 0.2 fprintf( ’%4.0f%’, 100 * r ); for k = 15 : 5 : 25 temp = (1 + r/n) ^ (n*k); P = r * A * temp / n / (temp - 1); fprintf( ’%10.2f’, P ); end; fprintf( ’\n’ ); % new line end; SUNY-New Paltz

  31. Vectorize the Problem for r = 0.1 : 0.01 : 0.2 k = 15 : 5 : 25; temp = (1 + r/n) .^ (n*k); P = r * A * temp / n ./ (temp - 1); disp( [100 * r, P] ); end; SUNY-New Paltz

  32. Eliminate for loops! r = [0.1:0.01:0.2]’ r = repmat(r, [1 3]) k = 15:5:25 k = repmat(k, [11 1]) temp = (1 + r/n) .^ (n * k); P = r * A .* temp / n ./ (temp - 1) SUNY-New Paltz

  33. Multi-dimensional arrays a = [1:2; 3:4] a(:,:,2) = [5:6; 7:8] a(:,:,1) = 1 2 3 4 a(:,:,2) = 5 6 7 8 SUNY-New Paltz

  34. Matrix operations Matrix multiplication SUNY-New Paltz

  35. Other matrix functions det determinant. eigeigenvalue decomposition. expmmatrix exponential, i.e. eA, where A is a matrix. invinverse. luLU factorization (into lower and upper triangular matrices). qrorthogonal factorization. svdsingular value decomposition SUNY-New Paltz

More Related