creating killer posters in powerpoint n.
Skip this Video
Loading SlideShow in 5 Seconds..
Creating Killer Posters in PowerPoint PowerPoint Presentation
Download Presentation
Creating Killer Posters in PowerPoint

Creating Killer Posters in PowerPoint

126 Vues Download Presentation
Télécharger la présentation

Creating Killer Posters in PowerPoint

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Creating Killer Posters in PowerPoint

  2. Poster Definition A large document that succinctly communicates the results of research both graphically and in print

  3. Purpose The ideal poster is designed to... • provide a brief overview of your work • initiate discussion  • attract attention  • give you something useful to point to as you discuss your work 

  4. Purpose • stand alone when you're not there to provide an explanation  • let people know of your particular expertise  • provide a place to set your handouts

  5. Why PowerPoint? 1. Most people have used PowerPoint to create presentations. 2. PowerPoint is a very user friendly program. 3. Most people have access to PowerPoint. 4. PowerPoint is readily compatible with other Microsoft programs such as Word, Excel, and Access. 5. PowerPoint presentations (already created) can be quickly adapted to a poster.

  6. Getting Started • Using a template • • • Using a template • • • Using a template • •



  9. Resources • Text • Graphics • Specifications from Venue

  10. Parts Main parts may include (for example): • Title • Introduction • Overview • Methods & Materials • Results • Discussion of results • Conclusions

  11. Parts • Citations • Acknowledgement of support from others • Further information all can be assimilated by viewers in 10 minutes

  12. Best Poster Award

  13. Getting Feedback • Create a Rough Draft • Ask others to review it and give their feedback • Get comments on: • Word count, prose style, idea flow, figure clarity, font size, etc. • Upload to and ask people to leave electronic post-its

  14. Printing Your Poster Contact Imprints: ACS Printing: http://acs/print/cplot1.php

  15. Making Your Poster Readable • Use dark backgrounds sparingly • Don’t exceed 40 characters/11 words (on average) width for text boxes • Avoid blocks of text longer than 5 sentences

  16. Making Your Poster Readable • Use italics instead of underlining • Use lots of white space • Use bullet points wherever appropriate

  17. Suggested Typefaces • Trebuchet • Verdana • Tahoma • Arial • Lucida Sans

  18. Text Sizes • Main Title: 80 pt • List of authors 60 pt • Topic Headings 60 pt • Main Text 32 pt – 36 pt • Captions 28 pt • Citations, etc. 24 pt

  19. Let’s Create a Poster My docs > IC Exercise > poster class > new class text My docs > IC Exercise > poster class > new poster image

  20. Agreement Between Structural Measures of Glaucoma Progressionusing Heidelberg Retina Tomograph Topographic Change Analysis • John P. Dunn, Frederick G. Boyd, Peter J. Wiley, Philip J. Roswell, Kevin T. Smith, Hamilton Glaucoma Center, Department of Ophthalmology, University of California, San Diego To investigate agreement for glaucoma progression using Heidelberg Retina Tomograph Topographic Change Analysis (HRTTCA) and stereoscopic optic disc photography. PURPOSE RESULTS METHODS • • 61 subjects were included. The characteristics of the subjects are • presented in Table 1. • • Agreement for detecting progression by stereophotographs and • HRT-TCA was fair (Kappa = 0.29, SE = 0.11). • • 7 eyes progressed on photographs between baseline and the • ante-penultimate HRT, 6 (86%) of which also showed evidence of • progression on the HRT-TCA (Table 2). • If photographic evidence is considered the ‘gold standard’ for • judging whether progression has occurred, the HRT-TCA had a • sensitivity of 86% (95% CI: 56.2 to 100%) and specificity of 70% • (95% CI: 57.3 to 83.5%). • • By recording location of change we were able to compare the • quadrants in which change had occurred. The position of the • areas of change corresponded exactly between HRT-TCA and • photographs in those eyes where the two techniques agreed. INTRODUCTION • Confocal scanning laser tomography can be used to produce • a topographic height map of the optic disc and peripapillary • retina with high spatial resolution. • This has potential advantages over conventional disc photography in terms of rapid image acquisition, quantitative analysis, and the ability to obtain highquality images without pupil dilation.1 • The high spatial resolution of the Heidelberg Retina Tomograph (HRT; Heidelberg Engineering GmbH, Dossenheim, Germany) allows the regional variability of measurements to be calculated2,3 which, once known, permits the detection of a statistically significant change in the same optic disc over time. • Recently, this statistical technique described by Chauhan et al4 has been incorporated into the HRT. The technique has the advantage that the user is not required to draw around the disc margin (contour line) and does not rely on an arbitrary depth for the definition of disc cupping (reference plane). • A recent longitudinal study comparing change detection using HRTTCA and standard perimetry-based glaucoma change probability analysis in 77 eyes showed agreement between these techniques of 27% for detecting change. The Heidelberg Retinal Tomograph Report. CONCLUSIONS • • HRT is the only instrument that has been available for this period of time and whose measurements have been consistent despite changes in imaging technology. • • High sensitivity achieved with HRT-TCA for detection of • glaucomatous progression in eyes that had progressed by • photographs, but specificity was poorer. Low specificity might be • attributable to early detection of progression by HRT-TCA. • In eyes where both photography and HRT-TCA agreed that • progression had occurred, the quadrants of change corresponded • exactly. • • Concordance between photographs and HRT-TCA of 72% • compared with a previous study that reported 81% concordance.5 • Current study had longer period of follow-up and more patients • with photography and HRT than previous study. HRT detects progressive changes due to glaucoma Heidelberg Retinal Tomography (HRT) Figure 3 Literature Cited • 1. Zangwill LM, Berry CC, Garden V, de Souza Lima M, Weinreb RN. Effect of cataract and pupil size on image quality with confocal scanning laser ophthalmoscopy. Arch Ophthalmol1997;115(8):983-90. • 2. Chauhan BC, LeBlanc RP, McCormick TA, Rogers JB. Test-retest variability of topographic • measurements with confocal scanning laser tomography in patients with glaucoma and control subjects. Am J Ophthalmol 1994;118(1):9-15. • 3. Brigatti L, Weitzman M, Caprioli J. Regional test-retest variability of confocal scanning laser • tomography. Am J Ophthalmol 1995;120(4):433-40. Quantitatively measuring the three vital structures, cup, rim, and RNFL, needed to make a complete assessment of glaucoma.

  21. HAVE FUN!!!