1 / 71

PART TWO Statistical Physics Chapter III:Statistic Distributions for ideal gases

PART TWO Statistical Physics Chapter III:Statistic Distributions for ideal gases. 32 Statistics Regularities. Distributions, Most Probable Distributions ( 统计调节。分布,最大概率分布 ) The main objective of statistical physics: 1) to establish the behavior laws for macroscopic quantities of a substance.

coty
Télécharger la présentation

PART TWO Statistical Physics Chapter III:Statistic Distributions for ideal gases

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PART TWO Statistical Physics Chapter III:Statistic Distributions for ideal gases • 32 Statistics Regularities. Distributions, Most Probable Distributions (统计调节。分布,最大概率分布) • The main objective of statistical physics: • 1) to establish the behavior laws for macroscopic quantities of a substance. • 2) to offer a theoretical substantiation(证实) of thermodynamic laws on the basis of atomic and molecular ideas.

  2. Basic Methods • Condition : a system consisting of a large number N of molecules(由微观极大数目的粒子构成). • Classical: using Newton’s classical mechanics(经典力学) to describe the state of the system; • Quantum: using quantum-mechanical description, the ideal of wave mechanics.

  3. Newton’s classical mechanics(经典力学) • Ignoring: intramolecular(分子内) structure, to visualize a molecule as a point or particle. • The equation of Newton’s motion for each of the N particles. • Fih:i’th与h’th分子的作用力;vi: velocity. • 求和存在的问题:1)要知道作用力或空间相关的作用势; • 2)要知道6N个初始条件:每个分子的三维坐标与动量。 • 3)假设上述条件已知,求和计算分子的路径。

  4. 困 难 与 解 决 方 法 • 数学计算上的求和的难度,使其几乎不可能。因为系统的粒子数达到1025m-3。 • 即使知道了粒子的路径和运动方程,也未必能提供以系统作为一个整体有用的信息。 • In a system consisting of a great number of particles new purely statistical or probability laws take effect that are foreign to (不适合于) a system containing a small number of particles.

  5. Statistical Method • Assumption: It is possible to measure rapidly the energy of each molecule of a gas. The results of such measurement are present graphically in the Figure. • The axis of the abscissa(横坐标轴) is subdivided into equal sections each 0long, and 0is sufficiently small enough. All energies in l0~(l+1)0 is assumed to be equal to l0.

  6. Energy Distribution Function and “ Boxes” • The relative number of molecules in the range l0~(l+1)0is denoted by n(l): • N is the total number. n(l) is “energy distribution function for molecules” or “energy distribution” • To divide the x-axis into longer unequal segments • “Boxes” • The number of molecules with lower or higher energies is very small.(能量差别不大的分子属一个盒)

  7. Cell • A box is a larger unit which contains several cells: molecules have the fully same energy. • A box which energy l0~(l+m)0, • m0 is the length of a box, which varies little. • Actually, all the histograms(矩形高度) will be close to some averaged histogram and large deviations from it will be rare.

  8. Microstate 微观状态 • To describe the state of a gas at some moment of time: Microstate • Classical mechanics: “coordinates(坐标) and velocity” • 设粒子的坐标与势能相关,而动能与速度相关: • 经典力学用坐标和动量描述粒子的“微观运动状态”。某一时刻,整个系统的N个粒子构成了一个“微观状态”,如前述的能量-粒子柱形图为能量分布图,或“状态分布”图。下一个时刻,N个粒子的能量(坐标及动量)发生了变化,微观状态也发生了变化。

  9. 一个气体分子平移运动的平均动量为 • 整个系统气体分子的平均能量为 • It is possible to find the mean values of any energy function if the “momentum distribution” are know. • 一个宏观的热力学系统用P、V、T、S描述。在一个状态下(平衡或不平衡),均可用统计的微观状态描述。即一个不变的热力学状态对应着许多的微观状态,其数目被称之为“微观状态数”。

  10. Basic physical postulate of statistical physics • “the greatest number of microstates of the most probable distribution and is equivalent to the equilibrium state of thermodynamics”.------两者相同点 • Thermodynamics assumes that a system remains in a state of equilibrium indefinitely long, but statistical physics predicts there existence of fluctuations(涨落) spontaneous(自发) and rare deviations from the equilibrium state. ------两者不同点

  11. 统计物理学关心的问题 • The problem of finding the most probable distribution for ensembles of non-interacting particles or for ideal gases.

  12. 33. -Space. Boxes and Cells • 借助于相-Space(六个坐标的空间)的概念导出统计分布。 • -Space : x,y,z, (ksai),(eta),(zita). System has N points. • This six-dimensional surface is specified by the equation: • The concept of the phase volume(相体积) in the -Space is introduced by the expression: • Subdivided into(细分) the volume in the configurational space and in the momentum space. (构型空间和动量空间)

  13. It might be convenient to select the spherical layers(球壳层): dV=4rdr2, dVp=4pdp2. • 若简化为一维的运动: • 相空间用代表点dxd 表示. 一个抛物线上的代表点能量相同。两个分子碰撞, 改变了各自的抛物线轨迹,但总能量不变。

  14. Boxes in the -Space • The qi and pi are applied to represent coordinate and momentum. It is not homogeneous (均匀的) in all the space. • In phase volume d, the number of representative points is dN. The density is (qi,pi) = dN/d. • A postulate is introduced: the distribution function for the -Space, (qi,pi), depends only on the particle energy  and not on qi and pi individually.

  15. The -Space is subdivided into “boxes” by carefully drawing the hypersurfaces of “constant energy”. This energy layer is sufficiently thin that the representative points代表点confined in the layer have the same energy  .

  16. 统计物理解决问题举例 • 一个三能级系统,0, 20, 30中,每个能级cells (原胞)有6个空位,共有6个完全相同的粒子,总能量为120,每个空位只能放一个,粒子如何分布? • 粒子可以采取的分布方式为: 上图为粒子微观状态的表现,下图为分布函数,四种微观状态出现的数目分别是1,6×15×6, 153, 202。

  17. 34 Bose-Einstein and Fermi-Dirac Distributions • Subdivision non-equidimensional energy boxes and equidimensional cells. • The ith energy box: having an energy i ,gi cells, Nirepresentative points. • How do these representative points distribute among the cells.? • Principle: any arrangement of representative points in the cells to be equiprobable. 等概率的 • The distribution is realized by the most probable distribution,--- the equilibrium state.

  18. Two Hypotheses 两个假设 • 1. All particles of one kind are absolutely identical to one another (所有粒子为全同). • 2. These particles differ slightly just as producting-line(生产线) identical parts produced in a factory differ from one another. • Both of above: “ particles of one kind are identical ”

  19. 微观状态的经典和量子描述 • N个全同粒子构成的体系,任意交换两个粒子的坐标和动量时,经典力学认为其微观状态不同。因为经典力学认为其运动轨迹是可以被跟踪的、每个粒子原则上是可以被识别的。 • 量子力学认为,任意交换两个粒子的,其微观状态相同。因为量子力学不可跟踪粒子的运动轨迹,运用的是测不准原理和几率分布。 • 一个柱形图在量子力学条件下为一个微观状态,---此为量子力学的“全同性原理”,全同粒子不可分辨;而在经典条件下为多个微观状态,粒子可以分辨。

  20. 粒子的量子性 • 自然界中有两类量子粒子:fermion and boson • Fermions follow an important law: the Pauli exclusion principle • in a system of N identical fermions one cell in the -space can contain no more than one representative point. • in a system of N identical bosons one cell in the -space can contain any number representative points from zero to N.

  21. Statistical properties of the different particles • To illustrate the difference in the statistical properties of the different particles by a simple example: “Arrange two particles on three cells 1, 2, 3” For the classic particles, they are distinguishable

  22. 经典 费米子 玻色子

  23. Classical : 9 arrangements; • Bosons: 6 arrangements;Fermion: 3 arrangements. • How about Ni particles in gi cells? For the Boson: How to express? The ith box :

  24. Analyses

  25. Calculate Wi • Wi: denoted as the number of different ways of arranging Ni particles in gi cells. • Two classes of objects: Particles & partitions • 粒子: Ni和隔离物:gi-1 • 不同的排列方式可以分为两种交换: • (1)粒子和隔离物;(2)粒子和粒子。 • 因此,粒子和隔离物排列在一条线上,总的排列方式: • (Ni +gi-1)! :包含了全同粒子交换Ni ! 和隔离物交换(gi-1)!

  26. Boson系统的物理量: • 要确定系统的最大几率分布,即确定W的最大值。从数学上看,确定lnW较为方便。定义= lnW 利用了近似等式:

  27. 求 的极大值 • 两个必要条件是:the total number of gas particles and the total energy of the gas are fixed. • 气体的分子总数一定;气体的总能量一定。用公式表示为 使用拉格朗日多项式变分的原理,使函数 = +N -  U的变分为零。得到 The most probable number of particles in a cell is:

  28. Fermi-Dirac distribution, Fermion (费米子) • Bose-Einstein distribution are specified by • Fermions are considered. For the ith energy box with a number of cells gi, and a number of particles Ni (Ni < gi), the different ways of distribution differ from each other only in that some cells are occupied by one particle and some cells are empty---permutations(置换) of empty cells

  29. 图中,一种分布为一个微观状态,此分布的微观状态数目为空胞的置换次数。空胞数为(gi-Ni), 总置换数gi!,总的粒子数置换数Ni!,总空胞置换数(gi-Ni)!微观状态为 N个粒子的排列方式是: 微观状态数W的极大等价于的极大

  30. 求的极大得到 • 同理利用Lagrangian方法,使函数的微分为零: 可以得到在Box上的粒子数: 并由此可以得到费米总粒子数的分布和能量公式:

  31. 35. The Boltzmann Principle • Two statistical distributions are known, but the meaning to be imparted(赋予) . • The important is to know the meaning of two parameters  and . Make physical postulate: • 1) W=W1·W2······Wn •  =1+2+······+n •  is a extensive quantity

  32. 2) In an isolated system, and in “平衡态” • Thermodynamics: • Statistical Physics: • 极大时的熵S对应着热力学系统的平衡态。 • 极为自然的问题:和S之间是否存在联系? • These arguments make it reasonable to postulate that with a degree of accuracy up to a constant multiplier thermodynamically defined entropy coincides(一致) with the quantity .

  33. 意 义 Boltzmann consider this situation and thought that there must be some internal connection between them. He applied a multiple constant to establish an equation: • Boltzmann endue(赋予) the entropy an statistical meaning . 宏观的熵其微观含义如何? • It is convenient to use another definition form. ------The Boltzmann Principle

  34. 在统计物理中,常常使用更为方便的表达方式:在统计物理中,常常使用更为方便的表达方式: • Here , the entropy is assumed to be a dimensionless quantity. Since the product TdS must have the dimension of energy, then the temperature must be in the energy units. • 即:熵S变成无维度的,温度变成能量单位的。 • The entropy of a system in a state of equilibrium is

  35. 熵的物理意义 • Boltzmann: the increase in entropy in an equalization process is the result of the system passing from a less probable states to the most probable state. 同一个物理系统,当它从完全混乱状态有序状态时,例如无序排列的液体的水在温度不变的条件下分子结晶成冰,熵如何变化? 例:一个红色墨滴滴入白色清水中,红色分子逐渐扩散至均匀状态,其过程为熵增加。可以认为分子从有序变为无序。熵增加,反之,则为 熵减小。 因此,熵的统计意义就是分子的“混乱程度”. 等温分子的扩散,熵增加,有“虚的”吸热。(对应S1)

  36. About an irreversible process: • What is the fundamental difference between the statistical interpretation and the thermodynamic interpretation? • From thermodynamics: a reverse process is impossible by definition. • From statistical physics: a transition from the most probable distribution to the less probable. • (除非由于涨落的影响,且涨落会很大。)

  37. The discuss of distribution • The Boltzmann principle can be used to find the meaning of two parameters. By the formulae: The upper sign pertains to the Bose distribution, and the lower to the Fermi distribution. The entropy S is related with both N and U. • 同一个BOX内的所有CELLS都是等价的,每个粒子占据不同cell的概率完全相同。Cells 越多,粒子占据该box的概率越大。为了表示粒子占据Cells的概率,定义了:

  38. Occupation Number “占有数”函数 • 粒子在一个cell上占据 的概率可以表示为: • 由于该函数对费米分布来说是一个分布函数,但对玻色分布来说有可能是大于1 的粒子数的函数:ni = Ni / g i ,故将其称之为粒子的“占有数”函数。作用? • 首先,利用占有数函数可以对熵函数进行化简。在玻色系统中,熵的表达式是:

  39. 熵的化简形式(玻色分布) • 将玻色分布的ni代入得到: • 其中: 将两个参量看作常数,得到:

  40. 熵的化简形式(费米分布) • 将费米色分布的ni代入得到 得到

  41. 熵的统一表达式 • Here, minus  bosons; positive  fermions. • Important emphasize: • 1) 式(35.5)和式(35.8) 适用于平衡与非平衡态。 • 2)式(35.7) 和式(35.10)仅适用于平衡态,因为在公式中包含了仅适用于平衡态时的极大熵和极大占有数n1,n2,…,ni…以及确定平衡时熵的两个参量与------热平衡的基本值。

  42. The meaning of the parameters  and  • Compare Eq(35.11) with the expression dS in thermodynamics. • 分析方法:定gi, i为常数。 • 1) 不变,S对求导; • 2) 不变,S对 求导。 • gi和I将与气体的容器尺寸相关,即与V相关。 • 假设无任何外场的作用, 即式(35.11)不再包含其他项,求导设定V不变,则

  43. and  的偏导数

  44. and  的值 • 将式(35.12)和式(35.13)代入得到: 已知:

  45. 关于单位:玻耳兹曼常数k是微观量,粒子数N是宏观量,可以将此微观量转化为宏观量:关于单位:玻耳兹曼常数k是微观量,粒子数N是宏观量,可以将此微观量转化为宏观量: • Nak = 6.023×1023×1.38×10 –23 = 8.31 (J K-1mol-1) • 在附录中R = 8.314 (J K-1mol-1); k = R/NA. • 理想气体的物态方程:PV = nRT = NkT. • 其中,N表示系统中的“粒子数”;n表示“摩尔数”。 • Accordingly, in all following sections the chemical potential does not refer to one mole of substance, as in thermodynamics, but to one particle, so that therm = NA stat is true. ( s ,T)代替(,)在公式中:

  46. 统计物理学所表示的公式 • From theEq.(35.11), the entropy is 此时的i为一个粒子的能量,表示某个粒子所处的能级。而熵是对所有这种能级求和。虽然我们已知了是化学势,也知道在热力学中它是相变的推动力,然而,在统计物理学中是否还有新的含义?长远的应用? • G =  N;(为一个分子的化学势)。 • F = U – TS = G – PV,F – G=U – TS – G= U -TS-  N

  47. 最终,统计公式可以写为: • 得到公式: 参量和一旦确定,上式的物理意义会发生变化: 仅仅是温度的函数, 已经确定;上左式中,化学势是粒子数N和温度T的函数,而上右式中,内能是化学势和温度的函数。可以推断:内能是粒子数N和温度T的函数。 ------理想气体的焦耳定律。

  48. 进一步分析,每个粒子的内能U/N将仅仅是温度的函数,从而成为强度量。V/N也将如此。进一步分析,每个粒子的内能U/N将仅仅是温度的函数,从而成为强度量。V/N也将如此。 • 如果外加其他场强的话,系统如何变化? i is the function of intensive parameters, i.e. field intensities.

  49. In Conclusion • The B.E. distribution and F.D. distribution are derived by the box-cell method presupposing (预先假定) that thermodynamic equilibrium state sets in. • The initial non-equilibrium particle distribution  equilibrium distribution  particles change their boxes to a equilibrium state. • Reason: N=cons. and particles interact with surrounding walls (thermostat). • Indeviation: both N and U are fixed, only ~T.

  50. 36. The Maxwell-Boltzmann Distribution • Question: How does classical particles distribute? • Let Box1 for N1, Box2 for N2, … • Box n for Nn, … . • 任意两个粒子两两交换:N!次 • 不考虑N1个粒子在BOX1中的交换; • 不考虑N2个粒子在BOX2中的交换; • 因此,将N个粒子填充到BOX 中的数目是:

More Related