1 / 24

Iridium catalyzed cycloaddition reactions

Iridium catalyzed cycloaddition reactions. 郭蕊 2011.5.16. Introduction Process in cyclosation Conclusion. Transfer hydrogenation and dehydrogenation. Crabtree, R. H.: et al.. J. Organomet. Chem. 1977 , 141, 205 Crabtree, R. Acc. Chem. Res. 1979 , 12, 331

dalit
Télécharger la présentation

Iridium catalyzed cycloaddition reactions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Iridium catalyzed cycloaddition reactions 郭蕊 2011.5.16

  2. Introduction • Process in cyclosation • Conclusion

  3. Transfer hydrogenation and dehydrogenation Crabtree, R. H.: et al.. J. Organomet. Chem. 1977, 141, 205 Crabtree, R. Acc. Chem. Res.1979, 12, 331 Stork, G.; et al. J. Am. Chem. Soc. 1983, 105, 1072 Pfaltz, A. et al. Angew. Chem. Int. Ed.1998, 37, 2897. Pfaltz, A.;et al. Adv. Synth. Catal. 2003, 345, 33. Pfaltz, A. et al. Science,2006, 311, 642

  4. Allylic substitution Callman, J. P. et al. Inorg. Chem. 1968, 7, 1298. Takeuchi, R.; et al. Angew. Chem., Int. Ed. 1997, 36, 263.; J. Am. Chem. Soc. 1998, 120, 8647.;Polyhedron2000, 19, 557. Helmchen, G.et al. Tetrahedron Lett. 1997, 38, 8025.

  5. Alkynylation Carreira, E. M. et al. Org. Lett. 2001, 3, 4319, Synthesis2004, 1497. Ishii, Y. Chem. Commun. 2004, 1638.

  6. Aldol and Related Reactions Matsuda, I.; Tetrahedron Lett. 2000, 41, 1405. Tetrahedron Lett. 2000, 41, 1409. J. Am. Chem. Soc. 2002, 124, 9072.

  7. cyclization the general mechanism for ransition metal-catalysed cyclization P. Andrew Evans, et al. Chem Soc. Rev. 2010, 39, 2791

  8. 1. [2+2+2] 1.1 Alkyne cyclotrimerisation W. Reppe and W. J. Schweckendiek, Justus Liebigs Ann. Chem.,1948, 560, 104 I. P. Rothwell, et al. Organometallics, 1993,12, 2911. J. Am. Chem. SOC., 1993, 4

  9. ligand-controlled iridium-catalysed [2+2+2] carbocyclisation reaction R. Takeuchi, et al. Org. Lett., 2003, 5, 3659

  10. 1.2 Two alkynes/diynes with an alkene/alkyne W. Reppe and W. J. Schweckendiek, Justus Liebigs Ann. Chem.,1948, 560, 104 I. P. Rothwell, J. Am. Chem. Soc., 1993,115,1581.

  11. Takeuchi, R.; Tanaka, S.; Nakaya, Y. Tetrahedron Lett. 2001, 42, 2991.

  12. Org. Lett., 2005,1711

  13. Intermolecuar reaction of diynes and monoalkynes a 0.5 mol% catalyst Shibata,T. et al. J. Am.Chem.Soc.2004.126,8382

  14. 2. [2+2+1](Pauson-Khand reaction) 2.1 Alkene-alkyne Catalytic enantioselective cobonylation coupling of compound 1 Shibata, T.; Takagi, K. J. Am. Chem. Soc. 2000, 122, 9852.

  15. 2.2 alkyne-alkyne/allene Shibata,T.et al. Org.Lett.2001,3,1217 75% when 20kpa CO Shibata,T.et al. Synlett 2003.573.

  16. 3. Miscellaneous Reactions 3.1 Enantioselective 1,3-Dipolar Cycloaddition of Nitrones to Methacrolein Daniel Carmona; et al. J. Am.Chem.Soc.2005.127,13386.

  17. 3.2 Annulation of 1,3-Dienes with 2-Formylphenylboronic Acid Nishimura, T.;et al.. J. Am. Chem. Soc. 2007,129, 7506.

  18. 3.3 [4+2] Shibata, T .;et al. synlett, 2002, 1681 ee up to 95% Shibata, T.; et al.. Synlett2008, 765.

  19. 5. carbonylative [5+1] cycloaddition of an allenylcyclopropane Murakami, M.; J. Org. Chem. 1998, 63, 4.

  20. cycloisomerization Chatani, N.; Inoue, H.; Morimoto, T.; Muto, T.; Murai, S. J. Org. Chem. 2001, 66, 4433.

  21. subsequent cycloisomerization/Diels–Alder reaction/dehydrogenative aromatization 35%-74% Yamamoto, Y.; et al.. J.Am. Chem. Soc. 2005, 127, 10804.

  22. From enynes to cyclopropanes Shibata, T.; et al. Tetrahedron 2005, 38, 9018.

  23. Iridium-Catalyzed Reaction of Aroyl Chlorides with Internal Alkynes Yasukawa, T.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2002, 124, 12680.

  24. Conclusions In most of the cases, the catalytic cycle is Ir(+1) ↔ Ir(+3). The substrate oxidatively adds to Ir(+1) to give Ir(+3). The bond-forming reaction occurs with Ir(+3). The product is then reductively eliminated from Ir(+3) to regenerate Ir(+1). To develop new catalytic reactions, another catalytic cycle needs to be explored.Considering that Ir(+5) has seven coordination sites, the catalytic cycle Ir(+3) ↔ Ir(+5) is more challenging

More Related