1 / 32

Ketone-Catalyzed Asymmetric Epoxidation Reactions

Ketone-Catalyzed Asymmetric Epoxidation Reactions. Application of Asymmetric Epoxidation in Natural Product Syntheses. MacDonald, F. et al Org. Lett 2000 , 2 , 2917. Yang, D. et al J.Org. Chem. 2000 , 65 , 2208-2217. Danishefsky, S. et al J. Org.Chem. 2001 , 66 , 4369-4378.

cadee
Télécharger la présentation

Ketone-Catalyzed Asymmetric Epoxidation Reactions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ketone-Catalyzed Asymmetric Epoxidation Reactions

  2. Application of Asymmetric Epoxidation in Natural Product Syntheses MacDonald, F. et al Org. Lett2000, 2, 2917. Yang, D. et al J.Org. Chem.2000, 65, 2208-2217. Danishefsky, S. et al J. Org.Chem.2001, 66, 4369-4378.

  3. Conditions for Converting Ketones into Dioxiranes • H2O2 may also employed as a primary oxidant

  4. Inductive Effects on Dioxirane Reactivity Yang, D. et al J.Org. Chem.2000, 65, 2208-2217.

  5. First Generation Chiral Ketone Catalyst Design Curci’s Chiral Ketones: ee’s were less that 20% olefins investigated Curci, R. et al Chem. Commun1984, 156-156. 4

  6. First Generation C2 Chiral Ketone Catalyst Design trans-stilbene was the alkene substrate 5 Yang, D. et al J.Org. Chem.2000, 65, 2208-2217.

  7. Stereoelectronic Effect on C2 Symmetric Catalyst Activity Yang, D. et al J.Org. Chem.2000, 65, 2208-2217.

  8. Stereoelectronic Effect on C2 Symmetric Catalyst Activity Behar, V. et al Tetrahedron Lett. 2002, 43, 1943-1946.

  9. Stereoelectronic Effect on C2 Symmetric Catalyst Activity Tomioka, K. et al Tetrahedron Lett.2002, 43, 631-633.

  10. Stereoelectronic Effect on C2 Symmetric Catalyst Activity 9 *ND = not determined Denmark, K. et al J. Org. Chem.2002, 67, 3479-3486.

  11. Chiral Ketones Derived from Sugars Mechanistic Hypothesis 10

  12. Epoxidation of Trisubstituted and trans-Substituted Alkenes ee’s determined and compared to % conversion Shi, Y et al J. Am. Chem. Soc. 2002, 43, 631-633.

  13. Use of H2O2 as a Primary Oxidant Use of H2O2 as a Primary Oxidant Mechanistic Hypothesis Mechanistic Hypothesis Shi, Y et al Tetrahedron 2001, 57, 5213-5218. Shi, Y et al Tetrahedron 2001, 57, 5213-5218. 12 12

  14. Evaluation of Asymmetric Epoxidation with H2O2 as a Primary Oxidant ee’s determined and compared to % conversion Shi, Y et al Tetrahedron 2001, 57, 5213-5218. 13

  15. Mechanistic Hypotheses for Epoxidation Stereoselectivity Shi, Y et al Tetrahedron 2001, 57, 5213-5218. 14 Singleton D. et al J. Am. Chem.Soc 2001,127, ASAP.

  16. Inductive Effect on the Reactivity of the Chiral Ketone Catalyst Shi, Y et al Tetrahedron 2001, 57, 5213-5218. 15

  17. Inductive Effect on the Reactivity of the Chiral Ketone Catalyst * results obtained withcatalyst 3 Shi, Y et al J. Am. Chem. Soc. 2002, 124, 8792-8793.

  18. Design of a Catalyst which is More Suitable for cis Olefins rationale for incompatibility with cis alkenes and terminal alkenes Shi, Y et al J. Org. Chem.2002, 67,2435-2446.

  19. Synthesis of Modified Catalyst Synthesis of Modified Catalyst Shi, Y et al J. Org. Chem. 2003, 68, 4963-4965.

  20. Typical Enantiomeric Excess Values Obtained from the Modified Catalyst Shi, Y et al J. Am. Chem. Soc. 2002, 67, 2435-2446. 19

  21. Kinetic Resoluion of With Asymmetric Epoxidation Shi, Y et al J. Am. Chem. Soc. 2005, ASAP. 20

  22. Rationale for Kinetic Resolution of epoxides Shi, Y et al J. Am. Chem. Soc. 2005, ASAP

  23. Chiral Ketones Derived from D-Glucose Shing et al Tetrahedron2002, 58, 7545-7552. 22

  24. Evaluation of a Chiral Ketone Derived from Glucose Shing et al Tetrahedron 2002, 58, 7545-7552. 23

  25. Evaluation of a Chiral Ketone Derived from Glucose Shing et al Tetrahedron 2002, 58, 7545-7552. 24

  26. Chiral Ketones Derived From L-Arabinose Shing et al Tetrahedron 2003, 59, 2159-2168

  27. Evaluation of a Chiral Ketone Derived From L-Arabinose The Effect of pH on Catalyst Activity Shing et al Tetrahedron 2003, 59, 2159-2168.

  28. Chiral Ketones Derived from D-(-)-Quinic Acid Shi, Y. et al 1997, 62, 8622-8623. 27

  29. Chiral Ketones Derived from D-(-)-Quinic Acid Shi, Y. et al 1997, 62, 8622-8623.

  30. Chiral Ketones Derived from D-(-)-Quinic Acid Shing et al Tetrahedron 2003, 59, 2159-2168. 29

  31. Evaluation of Chiral Ketones Derived from D-(-)-Quinic Acid Shing et al Tetrahedron 2003, 59, 2159-2168. 30

  32. Asymmetric Epoxidation with Chiral Cyclohexanones Roberts, S. M. J. Synth. Org. Chem. Jpn.2002,60, 342-349. 31

More Related