1 / 41

Descriptors ( Description of Interest Regions with Local Binary Patterns)

Descriptors ( Description of Interest Regions with Local Binary Patterns). Yu-Lin Cheng (03/07/2011). Outline. Scale Invariant Feature Transform (SIFT) Descriptor Local Binary Pattern (LBP ) Descriptor Center-Symmetric LBP (CS-LBP) Descriptor

damia
Télécharger la présentation

Descriptors ( Description of Interest Regions with Local Binary Patterns)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Descriptors(Description of Interest Regions with Local Binary Patterns) Yu-Lin Cheng (03/07/2011)

  2. Outline • Scale Invariant Feature Transform (SIFT) Descriptor • Local Binary Pattern (LBP) Descriptor • Center-Symmetric LBP (CS-LBP) Descriptor • Histogram of Oriented Gradients (HOG) Descriptor

  3. descriptor SIFT(Scale Invariant Feature Transform ) • SIFT Algorithm:

  4. Good ! bad scale scale SIFT(Scale Invariant Feature Transform ) • Scale-space Extrema Detection: • Stable feature points ----- (scale invariant) • Principle: • A local maximum over scales by using combination of normalized derivatives can be treated as a characteristic point of local structure • Use LoG to find maximum

  5. SIFT(Scale Invariant Feature Transform ) • Scale-space Extrema Detection: • Use DoG instead of LoG ---- (computational efficiency)

  6. SIFT(Scale Invariant Feature Transform ) • Scale-space Extrema Detection:

  7. SIFT(Scale Invariant Feature Transform ) • Scale-space Extrema Detection: • Local extrema detection: • Compare to 26 neighbors • Keep the same keypoint in all scale

  8. SIFT(Scale Invariant Feature Transform ) • Scale-space Extrema Detection: • Reject points with low contrast

  9. SIFT(Scale Invariant Feature Transform ) • Accurate keypoints localization: • Quadratic function to interpolate the location of maximum • Eliminate edge response: r: threshold, H: Hessian matrix

  10. SIFT(Scale Invariant Feature Transform ) • Orientation Assignment: • Assign a consistent orientation to achieve orientation invariant • Method:

  11. SIFT(Scale Invariant Feature Transform ) • Orientation Assignment: • Calculate gradient magnitude and direction of neighboring pixels

  12. SIFT(Scale Invariant Feature Transform ) • Orientation Assignment: • Calculate weighted orientation histogram

  13. SIFT(Scale Invariant Feature Transform ) • Orientation Assignment: • Calculate weighted orientation histogram

  14. SIFT(Scale Invariant Feature Transform ) • Orientation Assignment: • Calculate weighted orientation histogram

  15. SIFT(Scale Invariant Feature Transform ) • Keypoints Descriptor: • Empirical result: • Cell size: 44 pixels • Block size: 44 cells • Dimension: 44 (cells) 8 (bins) = 128 Weighted magnitude

  16. SIFT(Scale Invariant Feature Transform ) • Keypoints Descriptor: • Avoid all boundary effect • Use trilinear interpolation • Normalization: (illumination invariant) • Normalize to unit length • Threshlod the maximum value to 0.2 • Match the magnitudes for large gradients is no longer important • Renormalize to unit length

  17. LBP(Local Binary Pattern) • A powerful mean of texture description • LBP operator: • Standard LBP: • Illustration:

  18. LBP(Local Binary Pattern) • Example: • Parameters: • P : Number of neighboring pixels • R : Radius

  19. LTP(Local Trinary Pattern) • LTP operator: • t : threshold • Illustration:

  20. CS-LBP(Center-Symmetric Local Binary Pattern) • CS-LBP operator: • Illustration:

  21. CS-LBP Descriptor • Flow diagram:

  22. CS-LBP Descriptor • Interest Region Detection: • Detectors: • 1. Hessian-Affine (blob-like structure) • 2. Harris-Affine(corner-like structure) • 3. Hessian-Laplace(scale-invariant version) • 4. Harris-Laplace (scale-invariant version) 4141

  23. CS-LBP Descriptor • Feature Extraction: • CS-LBP operator: • Parameters: • R: radius • R = 1, 2 • N: number of neighboring pixels • N = 6, 8 • T: threshold • T = 0.2 • Descriptor Construction: • Location grids • 33 cells/44 cells • Avoid boundary effects: • Using ‘bilinear interpolation’ 4141

  24. CS-LBP Descriptor • Descriptor Normalization: (illumination invariant) • Normalize to unit length • Thresholding • Renormalize to unit length

  25. Comparison(SIFT v.s. CS-LBP) • Assumption: • Computations cannot be reused from detection algorithm • Comparison: • Conclusion: • Computational efficiency and better performance than SIFT

  26. HOG(Histogram of Oriented Gradients)

  27. HOG(Histogram of Oriented Gradients) • Gradient Computation:

  28. HOG(Histogram of Oriented Gradients) • Gradient Computation:

  29. HOG(Histogram of Oriented Gradients) • Spatial/Orientation Binning: • Weighted votes • Function of magnitude • Avoid aliasing • Interpolation • Parameters: • Number of orientation bins • Cell size • Block size Cell Block

  30. HOG(Histogram of Oriented Gradients) • Spatial/Orientation Binning: • Parameters: • Number of orientation bins: 9 bins/18bins • Cell size: 88 pixels • Block size: 22 cells

  31. HOG(Histogram of Oriented Gradients) • Normalization: • Group cells to larger blocks and normalize each block separately(illumination invariant) • Normalization Schemes:

  32. HOG(Histogram of Oriented Gradients) • Normalization: • Normalization Schemes:

  33. Comparison(SIFT v.s. HOG) • Comparison:

  34. HOG Variation • ‘Object Detection with Discriminatively Trained Part Based Models’ • Pixel-Level Feature Maps: • Use [-1, 0, 1] to calculate gradient • Contrast sensitive(B1), Contrast insensitive(B2) ,(p = 9) • Quantize into orientation bins r: gradient magnitude

  35. HOG Variation • Spatial Aggregation: • Rectangular cell: 88 pixels • Cell-based feature map: • Reduce the size of feature map • Avoid aliasing: • Bilinear interpolation • Normalization:

  36. HOG Variation • Truncation: maximum 0.2 • No renormalization • Dimension: • 9 bins 4 different normalization = 36 (contrast insensitive)

  37. HOG Variation • PCA analysis: • Top 11 eigenvectors captures most of information of HOG

  38. HOG Variation • PCA analysis: • Top eigenvectors lie (approximately) in a linear subspace • 13-dimensional features: • Project 36-dimensional HOG feature into uk, vk • Projection into uk: sum over 4 normalization over fixed orientation • Projection into vk: sum over 9 orientation over fixed normalization

  39. HOG Variation • For Contrast Insensitive(B2): • 9 bins 4 different normalization = 36 (contrast insensitive) • For Contrast Sensitive(B1): • 18 bins 4 different normalization = 72 (contrast insensitive) • Reduce to (18 + 9) + 4 = 31 dimension

  40. Reference • “Description of Interest Regions With Local Binary Patterns”, Pattern Regonization ’09 Marko Heikkilä • http://www.tele.ucl.ac.be/~devlees/ref_ELEC2885/projects/RoIdescriptionLBP-pr-accepted.pdf • “Effective Pedestrian Detection Using Center-symmetric Local Binary/Trinary Patterns”, YoungbinZheng • “Scale-space Theory” Tony Lindeberg • “Histogram of Oriented Gradients for Human Detection”, CVPR ‘05 NavneetDalal • “Finding People in Images and Videos”, NavneetDalal • “Feature matching” Yung-Yu Chuang • “Scale & Affine Invariant Interest Point Detectors”, IJCV ’04 KrystianMikolajczyk

  41. Reference • “Object Detection with Discriminatively Trained Part Based Models” • “Distinctive Image Features from Scale-Invariant Keypoints”, IJCV ’04 David G. Lowe • http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.157.3843&rep=rep1&type=pdf

More Related