1 / 30

6/6/2014

Institute of Food and Agricultural Sciences (IFAS) . Biogeochemistry of Wetlands Science and Applications. ADVANCES IN BIOGEOCHEMISTRY. Wetland Biogeochemistry Laboratory Soil and Water Science Department University of Florida. Instructor : Patrick Inglett pinglett@ufl.edu .

darryl
Télécharger la présentation

6/6/2014

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Institute of Food and Agricultural Sciences (IFAS) Biogeochemistry of Wetlands Science and Applications ADVANCES IN BIOGEOCHEMISTRY Wetland Biogeochemistry Laboratory Soil and Water Science Department University of Florida Instructor : Patrick Inglett pinglett@ufl.edu 6/6/2014 6/6/2014 P.W. Inglett WBL 1 1 6/6/2014 WBL 1

  2. S. Harris: http://www.sciencecartoonsplus.com/ P.W. Inglett

  3. P.W. Inglett

  4. Environmental sample Characterization of specific organisms having the gene Sequencing NA extraction Cloning probes PCR q-PCR DGGE t-RFLP Abundance/ expression of specific gene Relative abundances of groups expressing gene Molecular Approaches: P.W. Inglett

  5. Molecular Approaches: Consortia c, Epifluorescence micrograph after hybridization with the general bacterial probe EUBmix (blue), the specific bacterial probe DBACT-193 (red) and the specific archaeal probe DARCH-872 (green). The bacterial partner is pink, as it hybridizes with both the general and specific bacterial probes. d, Epifluorescence micrograph after hybridization with the general archaeal probe ARCH915 (blue), the specific archaeal probe DARCH-872 (red) and the general bacterial probe EUBmix (green). The archaeal partner is pink because it hybridizes with both the general and specific archaeal probes. Scale bars, 5  m. See Methods for specification of probes. Raghoebarsing et al. 2006. Nature 440, 918-921 P.W. Inglett

  6. Isotopic Approaches: Natural Abundance Levels • Monitored groundwater Nitrate in wells near drainage ditches P.W. Inglett Sidle et al. 2000. Wetlands 20: 333-345.

  7. 13CO2 13CO2 13CO2 13CO2 13CO2 13C 13CO2 13CO2 Time 13CO2 13CO2 13CO2 13C Time 13C Time Isotopic Approaches: Enriched Levels P.W. Inglett

  8. Isotopic Approaches: Enriched Levels Buckley, et al. 2007. Appl. Env. Microbiol. 73: 3189–3195 P.W. Inglett

  9. CO2 ALGAE EPS Glycolate BACTERIA Cooperative relationship ? P.W. Inglett

  10. Group-Specific 13C Tracing (using Phospholipid Fatty Acids, PLFA) Cyanophytes Green Algae Green Algae Gram(-) Bacteria Gram(-) Bacteria Gram(+) Bacteria P.W. Inglett

  11. Coupled Biogeochemical Cycles • Mutual dependency of one cycle on another (feedbacks and controls) or one organism on another (microbes, algae, and vegetation) • Linkages between biogeochemical processes and biotic communities (vegetation, algae, and microbes) • Cycles at different scales (molecular to landscape) P.W. Inglett

  12. Biogeochemical Gradients • Hydrologic gradients • Climate gradients • Nutrient gradients • Biotic community gradients • Spatial gradients • Temporal gradients • Scales P.W. Inglett

  13. Plant Org-N NH4+ NO3- Microbial Biomass Nitrifiers Denitrifiers N2/N2O Coupled Cycles Ecosystem Processes: Nutrient Competition P.W. Inglett

  14. Ecosystem Coupling: Salt Marsh Nutrient Limitation? Plant Cont Cont Sundareshwar, et al. 2003. Science 299: 563 – 565. P.W. Inglett

  15. Coupled Cycles: Salt Marsh Nutrient Limitation? Control w/ P Control w/ Glucose Sundareshwar, et al. 2003. Science 299: 563 – 565. P.W. Inglett

  16. Coupled Cycles: Salt Marsh Nutrient Limitation? Plant P NH4+ NO3- C N-fixers Nitrifiers Denitrifiers N2/N2O Sundareshwar, et al. 2003. Science 299: 563-565. P.W. Inglett

  17. Improving Models Lithology Hydrology Land Use P.W. Inglett

  18. Improving Models • Vegetation • Organic matter • Rhizosphere interactions P.W. Inglett

  19. Improving Models Photos courtesy of G. W. Hurt P.W. Inglett

  20. WELL-DRAINED SOIL Mn4+ Fe3+ Aerobic RECENTLY FLOODED Mn4+ Fe3+ Fe3+ Mn4+ Mn2+ Fe2+ Anaerobic Aerobic RECENTLY DRAINED FLOODED FOR LONG PERIOD Mn4+ Mn2+ Fe3+ Fe2+ Fe2+ Mn2+ Mn2+ Fe2+ Anaerobic Anaerobic Aerobic Improving Models P.W. Inglett

  21. Improving Models http://www.riversofalabama.org/HEADQUARTERS.htm P.W. Inglett

  22. http://www.lucsorel.com/media/research/qualscape_organigram.pnghttp://www.lucsorel.com/media/research/qualscape_organigram.png P.W. Inglett

  23. Real-Time Data http://hudson.dl.stevens-tech.edu/maritimeforecast/maincontrol.shtml 05:00 08:00 P.W. Inglett 11:00

  24. P.W. Inglett

  25. P.W. Inglett

  26. P.W. Inglett

  27. P.W. Inglett

  28. P.W. Inglett

  29. P.W. Inglett

  30. The Future • Identification of organism and pathway diversity • Refine methods to partition and trace element flows • Integrate the concepts of coupled cycles into our temporal and landscape models • Real time simulations/predictions P.W. Inglett

More Related