1 / 44

以流量為基礎之 IEEE 802.16e 睡眠排程機制 A Load-based Power Saving and Scheduling Scheme in IEEE 802.16e

以流量為基礎之 IEEE 802.16e 睡眠排程機制 A Load-based Power Saving and Scheduling Scheme in IEEE 802.16e. 國立暨南國際大學 資訊工程系 楊峻權 2010.05.04. Outline. Introduction Wireless Standards, IEEE 802.16e/m Power Saving Techniques IEEE 802.16e/m Power Saving Class Related Work Load-based Power Saving

dasan
Télécharger la présentation

以流量為基礎之 IEEE 802.16e 睡眠排程機制 A Load-based Power Saving and Scheduling Scheme in IEEE 802.16e

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 以流量為基礎之IEEE 802.16e睡眠排程機制A Load-based Power Saving and Scheduling Scheme in IEEE 802.16e 國立暨南國際大學 資訊工程系 楊峻權 2010.05.04

  2. Outline • Introduction • Wireless Standards, IEEE 802.16e/m • Power Saving Techniques • IEEE 802.16e/m Power Saving Class • Related Work • Load-based Power Saving • LBPS-Aggr, LBPS-Split, LBPS-Merge • Performance Evaluation • Conclusion

  3. Wireless Standards Wide Area Network (WAN) 802.16e/m Nomadic 802.20 Mobile 802.21 Handoff 802.22 WRAN 2, 2.5, 3G Cellular Metropolitan Area Network (MAN) 802.16/WiMax Fixed Wireless MAN Local Area Network (LAN) 802.11 Wi-Fi Personal Area Network (PAN) 802.15.1 Bluetooth 802.15.3 802.15.4 Zigbee

  4. IEEE 802.16 Standards (1)

  5. IEEE 802.16 Standards (2)

  6. IEEE 802.16e • Newly developed broadband wireless communication technology • MSS is battery-powered • An effective power-saving strategy is necessary for extending the operation time • Periodically turn off the transceiver to save power (Sleep Mode)

  7. IEEE 802.16e MAC protocol • Frequency division duplex (FDD) mode and time division duplex (TDD) mode • Downlink: from the BS to MSSs • Point-to-multipoint broadband wireless access • Uplink • Multiple MSSs share one slotted uplink channel via TDD on a demand basis for voice, data, and multimedia traffic • The BS handles bandwidth allocation by assigning uplink slots based on requests from MSSs

  8. IEEE 802.16e Service classes • Unsolicited Grant Service (UGS) • Real-Time Polling Service (rtPS) • Non-Real-Time Polling Service (nrtPs) • Best Effort (BE) IEEE 802.16e  IEEE 802.16m (1Gbps, 4G)

  9. IEEE 802.16m Service classes • Real-time constant bit-rate(e.g., VoIP without silence suppression) • Extended real-time variable bit-rate(e.g., VoIP with silence suppression) • Real-time variable bit-rate(e.g., MPEG video) • Non-real time variable bit-rate(e.g., FTP, HTTP) • Best effort(e.g., E-mail)

  10. Power Saving Techniques (1) • Application layer • Load partitioning (computation performed at BS) • Reduce # of transmissions for operations (e.g. via data compression) • Transport layer • Reduce # of retransmissions • Network layer • Power efficient routing through a multi-hop network

  11. Power Saving Techniques (2) • Data link layer • Reduce # of packet errors at a receiving node • Automatic Repeat Request (ARQ)and Forward Error Correction (FEC) • MAC layer • Sleep scheduling protocols • Cycle the radio between its on and off power states • Physical layer • Proper hardware design techniques

  12. IEEE 802.16e Power Saving • Three types of Power Saving Class (PSC) • Type I: MSS doubles its next sleep period if no packets are sent or received • Type II: MSS repeats the sleeping and listening periods in a round-robin fashion • Type III: MSS sleeps for the predefined period and then returns to normal operation

  13. IEEE 802.16e Type I PSC

  14. IEEE 802.16e Type II PSC

  15. IEEE 802.16e Type III PSC

  16. IEEE 802.16m Type IV PSC

  17. IEEE 802.16m PSC

  18. Related Work (1) • Performance analysis (mainly PSC Type I) • For downlink traffic by semi-Markov chain (IEEE Comm. Mag. 2005) • For downlink & uplink by Poisson traffic pattern (IEEE Comm. Mag. 2006) • Hyper-Erlang distributed inter-arrival time (IEEE WCNC 2007) • Optimal selection of PSC I and II (IEEE WCNC 2007)

  19. Related Work (2) • Adaptive power saving mechanisms • Adjusting the waiting time before entering the sleep mode • Adjusting the initial and final sleep windows (IEEE Globecom 2006) • Delay-based sleep scheduling • Latest enhancements (IEEE Trans. VT 2009, 2010)

  20. Load-based Power Saving • Weakness of PSC I and PSC II • Exponential increase or constant pattern • Traffic modeling and Measurement • Poisson arrival process (uplink & downlink) • MSS’s load  sleep cycle length • Data accumulation threshold (1 time frame) • BS responsible for sleep schedule

  21. LBPS in light load

  22. LBPS in heavy load

  23. LBPS-Aggr Protocol

  24. LBPS Mathematics (1)

  25. LBPS Mathematics (2) Data_TH = one time frame of data Prob_TH = 0.8 in the simulation

  26. Problem with LBPS-Aggr • Unrealistic assumption of synchronized sleep cycle for all MSSs • Low utilization of mini-slots in a time frame • Two enhancements • LBPS-Split • LBPS-Merge

  27. LBPS-Split Protocol (1)

  28. LBPS-Split Protocol (2)

  29. Features of LBPS-Split • Dividing MSSs to separate groups • All MSSs with the same length(K*) of the sleep cycle • Is it possible to use different value of K* for different MSS?  LBPS-Merge • Schedulability for different K*

  30. LBPS-Merge Protocol (1) 2

  31. LBPS-Merge Protocol (2)

  32. Simulation Study

  33. Performance Criteria • Power Saving Efficiency (PSE) • PSE = (K-1)/K • Access delay

  34. Power Saving Efficiency (1)

  35. Power Saving Efficiency (2)

  36. Access Delay (1)

  37. Access Delay (2)

  38. LBPS-Split: Impact of # MSS (1)

  39. LBPS-Split: Impact of # MSS (2)

  40. LBPS-Merge: Impact of # MSS (1)

  41. LBPS-Merge: Impact of # MSS (2)

  42. Impact of load distribution (1)

  43. Impact of load distribution (2)

  44. Conclusion & Future Work • Load-Based Power Saving • Traffic Modeling & Measurement • LBPS-Aggr, LBPS-Split, LBPS-Merge • Better power saving efficiency • Future work • Integrated real-time and non-real-time • More general traffic modeling

More Related