170 likes | 192 Vues
Explore the key technologies and instruments of the INTEGRAL payload, featuring IBIS Imager, SPI Spectrometer, JEM-X X-ray Monitor, and OMC Optical Monitor. Learn about detectors, calibration sources, and advancements in detector technology.
E N D
Sezione di Bologna INTEGRAL payload • INTErnational Gamma RAy Laboratory • - Range 15 keV - 20 MeV • - 4 strumenti • IBIS imager • SPI spettrometro • JEM X x-ray monitor • OMC optical monitor • lanciato il 17.10.2002, • operativo per le osservazioni • dal gennaio 2003 http://sci.esa.int/integral/
Sezione di Bologna IBIS Collimatore Piano ISGRI Piano PICSIT PICsIT integrato in IBIS Struttura principale Moduli anti-coincidenza Maschera codificata a circa 3 m dal piano dei detectors 2 detectors layers: ISGRI 16384 CdTe detectors (CEA) area sensibile 2600 cm2 range 15 - 500 keV PICsIT 4096 CsI(Tl)-PD detectors (IASF-Bo) area sensibile 2890 cm2 range 180 keV - 20 MeV Anticoincidenza ( ), Fast Data Handling ( ), Calibration source ( ) Massa corpo centrale 380 kg dimensioni 940 x 940 x 850(h) mm
Modulo del rivelatore PICsIT Pixel Montaggio elettronica ICARUS ASIC Assemblaggio pixel
Egg-crate PD BIAS AFEE1 AFEE 2 Icarus ASIC Icarus ASIC DFEE board DFEE PICsIT modulo Pixel assembly
PICsIT short history Design modulo 1996 Modulo di qualifica, 1999 Picco a 661 keV da 137Cs eventi singoli Prima luce piano PICsIT Ottobre 2002
AGILE Italian satellite for g-ray astrophysics in the 20 MeV – 20 GeV range Bruno Rossi prize 2012 for the discovery of the Crab nebula g-ray variability • Mini Calorimeter (MCAL) • designed and tested at IASF Bologna • 30 CsI(Tl) bars with Photodiode readout • 1400 cm2 geometrical area • ~300 cm2 effective area @ 1 MeV • 330 keV – 100 MeV energy range • 14% energy resolution FWHM @ 1.3 MeV • 2 s timing accuracy in photon-by-photon mode • Clever, fully-programmable trigger logic on time scales from 8s to 16ms, 1ms and 300s 40 cm MCAL highlight: TGF detection above 40 MeV
Silicon Drift Detectors (SDD) technology development • SDDs (Gatti & Rehak, NIM A225, 1984): electricfieldmodulation inside the depletionregion by means of suitablypolarizedelectrodes P. Lechner et al., NIM A377, 1996 • Small collectinganode -> low output capacitance -> lowelectronicnoise -> higherenergyresolutionthan an equivalentp-i-n PD • Possibility to integrate first amplifying JFET directly on-chip: furthersignal-to-noise ratio improvement • Severaldimensions and design available, possibility to measuredrift time for position resolution, single devices or integrated arrays, possibility to couple to scintillators
Single SDD / SDD matricesfor X-rays Single SDD with integrated JFET (by MPI HLL and PNSensor gmbh) SDDs matrix with external JFETs (design INFN TS, manufacturing FBK TN) Front-end electronics optimization
SDD/CsI as an extended energy range detector (2 keV – 1 MeV) SDD scintillator • SDD coupled to CsI(Tl) crystal • X rays interacting in Si: fast pulse • g rays interacting in CsI: slow pulse • identification of the interaction by means of pulse shape discrimination (PSD) g X Si CsI efficiency in CsI SDD efficiency in Si Direct detection in Si Scintillation light detection Thresholds with PD readout Energy range overlap: ~100% efficiency Marisaldi, et al., IEEE Trans. Nucl. Sci., 51 (2004), 1916 Marisaldi, et al., IEEE Trans. Nucl. Sci., 52 (2005), 1842
SDD monolithic array coupled to CsI(Tl) scintillator matrix • Use of detector arrays is mandatory for space applications • Use of SDD array (MEGA chip) procured from PNSensor gmbh in the frame of an Italian Space Agency (ASI) – financed R&D project X-ray spectrum C. Labanti et al., SPIE Proc. 2008 F. Perotti et al., SPIE Proc. 2008 g-ray spectrum
Large Area SDDs for X-ray detection The ALICE @LHC heritage: 53cm2 SDD basic block for the Large Observatory For x-ray Timing (LOFT) ESA mission, currently in assessment phase Zampa et al., NIM A 633 (2011)
Exploring new detector technologies:Single Photon Avalanche Diodes (SPAD) for space applications Cova, S. et al, Appl. Optics 35 (1996) • Double-side readout of scintillating fibers with SPAD as a possible element for next generation g-ray detectors • 500mm SPAD coupled to 3m long scintillating fibers successfully realized • >90% efficiency obtained in test beam with MIPs at CERN • Sensisitve to radiation damage, but still applicable in low inclination LEO (best for g-ray telescopes) Marisaldi et al., IEEE NSS Proc. 2011; Marisaldi et al., SPIE Proc. 2012