160 likes | 231 Vues
Explore the properties of two quadrilaterals using distance, midpoint, and slope formulas to determine congruence, parallel lines, perpendicular lines, and diagonal properties.
E N D
Given quadrilateral QUADQ(-3, 1) U(1, 3) A(4, 2) D(-4, -2) NO, they aren’t congruent! (different lengths) (Use the distance formula!) Are the opposite sides QU and AD congruent? QU 42 + 42 = d2 16 + 4 = d2 20 = d2 d = AD 82 + 42 = d2 64 + 16 = d2 80 = d2 d =
Given quadrilateral ABCDA(-4, 5) B(1, 1) C(-3, -4) D(-8, 0) Yes, they are congruent! (same lengths) (Use the distance formula!) Are the opposite sides AB and CD congruent? AB 52 + 42 = d2 25 + 16 = d2 41 = d2 d = CD 52 + 42 = d2 25 + 16 = d2 41 = d2 d =
Do the diagonals bisect each other? NO, they don’t bisect each other! (not same midpoint) Given quadrilateral QUADQ(-3, 1) U(1, 3) A(4, 2) D(-4, -2) (Use the midpoint formula!) UD (-1.5, .5) QA (.5, 1.5)
Are the opposite sides AD and BC parallel? Given quadrilateral ABCDA(-4, 5) B(1, 1) C(-3, -4) D(-8, 0) Yes, they are parallel! (same slopes) (Use the slope formula!) AD BC
Given quadrilateral ABCDA(-4, 5) B(1, 1) C(-3, -4) D(-8, 0) Yes, they are perpendicular! (b/c the slopes are opprecips) (Use the slope formula!) Are the diagonals perpendicular? AC BD
Are the opposite sides AB and CD parallel? Given quadrilateral ABCDA(-4, 5) B(1, 1) C(-3, -4) D(-8, 0) Yes, they are parallel! (same slopes) (Use the slope formula!) AB CD
Given quadrilateral QUADQ(-3, 1) U(1, 3) A(4, 2) D(-4, -2) NO, they aren’t perpendicular! (b/c the slopes aren’t opprecips) (Use the slope formula!) Are the diagonals perpendicular? QA UD
Given quadrilateral QUADQ(-3, 1) U(1, 3) A(4, 2) D(-4, -2) Yes, they are congruent! (same lengths) (Use the distance formula!) Are the opposite sides UA and QD congruent? UA 32 + 12 = d2 9 + 1 = d2 10 = d2 d = QD 12 + 32 = d2 1 + 9 = d2 10 = d2 d =
Given quadrilateral QUADQ(-3, 1) U(1, 3) A(4, 2) D(-4, -2) Are the opposite sides QU and AD parallel? Yes, they are parallel! (same slopes) (Use the slope formula!) QU AD
Given quadrilateral ABCDA(-4, 5) B(1, 1) C(-3, -4) D(-8, 0) Yes, they are congruent! (same lengths) (Use the distance formula!) Are the opposite sides BC and AD congruent? BC 42 + 52 = d2 16 + 25 = d2 41 = d2 d = AD 42 + 52 = d2 16 + 25 = d2 41 = d2 d =
Given quadrilateral QUADQ(-3, 1) U(1, 3) A(4, 2) D(-4, -2) Are the opposite sides UA and QD parallel? NO, they aren’t parallel! (different slopes) (Use the slope formula!) UA QD
Given quadrilateral ABCDA(-4, 5) B(1, 1) C(-3, -4) D(-8, 0) Yes, they are congruent! (same lengths) (Use the distance formula!) Are the diagonals congruent? AC 12 + 92 = d2 1 + 81 = d2 82 = d2 d = BD 12 + 92 = d2 1 + 81 = d2 82 = d2 d =
Are the consecutive sides AB and BC perpendicular? Given quadrilateral ABCDA(-4, 5) B(1, 1) C(-3, -4) D(-8, 0) Yes, they are perpendicular! (slopes opp reciprocals) (Use the slope formula!) AB BC
Given quadrilateral QUADQ(-3, 1) U(1, 3) A(4, 2) D(-4, -2) Are the consecutive sides QU and UA perpendicular? NO, they aren’t perpendicular! (slopes not opp reciprocals) (Use the slope formula!) QU UA
Given quadrilateral QUADQ(-3, 1) U(1, 3) A(4, 2) D(-4, -2) Yes, they are congruent! (same lengths) (Use the distance formula!) Are the diagonals congruent? QA 72 + 12 = d2 49 + 1 = d2 50 = d2 d = UD 52 + 52 = d2 25 + 25 = d2 50 = d2 d =
Do the diagonals bisect each other? Given quadrilateral ABCDA(-4, 5) B(1, 1) C(-3, -4) D(-8, 0) Yes, they bisect each other! (same midpoint) (Use the midpoint formula!) BD (-3.5, .5) AC (-3.5, .5)