1 / 57

Chapter 12: File System Implementation

Chapter 12: File System Implementation. This chapter is concerned with the details associated with file systems residing on secondary storage. Specific implementation issues are explored using the disk as the secondary storage device. File System Structure File System Implementation

dominica
Télécharger la présentation

Chapter 12: File System Implementation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 12: File System Implementation This chapter is concerned with the details associated with file systems residing on secondary storage. Specific implementation issues are explored using the disk as the secondary storage device. • File System Structure • File System Implementation • Directory Implementation • Allocation Methods • Free-Space Management • Efficiency and Performance • Recovery • Log-Structured File Systems • NFS Operating System Concepts

  2. File-System Structure Pertinent Disk Details • The physical unit of transfer is a disk sector (e.g., 512 bytes). • Sectors can be written in place. • Any given sector can be accessed directly. • The OS imposes a file system for efficient and convenient access to the disk. • The file system design deals with two distinct matters: • How should the file system look to the user. • Creating data structures and algorithms to mapthe logical file system onto the physical secondary-storage device. Operating System Concepts

  3. Blocks and Fragments [4.2BSD] • Logical transfer of data is in blocks. • Blocks are “chunks” or clusters of disk sectors. • block size decision:: {a time space tradeoff} • Uses two sizes block and fragment • E.g. 4KB block; 1KB fragment Operating System Concepts

  4. Layered File System A layered design abstraction • I/O control :: device drivers and interrupt service routines that perform the actual block transfers. • Basic file system :: issues generic low-level commands to device drivers. • File organization :: translates logical block addresses to physical block addresses. • Logical file system :: handles metadata that includes file-system structure (e.g., directory structure and file control blocks (FCB’s). Operating System Concepts

  5. In-Memory File System Structures On-disk and in-memory structures are needed to implement a file system: On disk:: • Boot control block: needed to boot OS from a disk partition. • Partition control block: holds details about partition (e.g., blocks in partition, free-block count, …) superblock [UNIX],Master File Table [NTFS] • Directory structure: to organize files. • FCB (or inode) : Operating System Concepts

  6. A Typical File Control Block [Linux] inode is the term for FCB Operating System Concepts

  7. In-Memory File System Structures On-disk and in-memory structures needed to implement a file system: In-memory:: • Per-process open-file table • System-wide open-file table • In-memory directory structure • In-memory partition table • In some OS’s file system scheme used as interface to other system aspects.[Unix uses system-wide open table for networking - e.g.,socket descriptors.] • Caching used extensively – namely, all the information about an open file is in memory except actual data blocks. Operating System Concepts

  8. In-Memory File System Structures (a) Open operation (b) Read operation Operating System Concepts

  9. File System Implementation Disk Space File Structure Table Open File Table User Space read (4, …) Data block Read (4,…) Inode list (per process) In-core inode list Modified Claypool Figure [Figure A.7 page 837] Operating System Concepts

  10. Virtual File Systems • Virtual File Systems (VFS) provide an object-oriented way of implementing file systems. • VFS allows the same system call interface (the API) to be used for different types of file systems. • The API is to the VFS interface, rather than any specific type of file system. • VFS provides a mechanism for integrating NFS into the OS. Operating System Concepts

  11. Schematic View of Virtual File System Operating System Concepts

  12. Directory Implementation • Linear list of file names with pointer to the data blocks. • simple to program • time-consuming to execute due to linear search • Hash Table – linear list with hash data structure. • decreases directory search time • collisions – situations where two file names hash to the same location • fixed size {disadvantage: hash function is dependent on fixed size} Operating System Concepts

  13. File System Implementation • Which blocks with which file? • File descriptor implementations: • Contiguous • Linked List • Linked List with Index • I-nodes File Descriptor Operating System Concepts

  14. Allocation Methods • An allocation method refers to how disk blocks are allocated for files: • Contiguous allocation • Linked allocation • Indexed allocation Operating System Concepts

  15. Contiguous Allocation • Each file occupies a set of contiguous blocks on the disk. • Simple – only starting location (block #) and length (number of blocks) are required. • Random access. • Wasteful of space (dynamic storage-allocation problem). • Files cannot grow. Operating System Concepts

  16. Contiguous Allocation of Disk Space Operating System Concepts

  17. Extent-Based Systems • Many newer file systems (I.e. Veritas File System) use a modified contiguous allocation scheme. • Extent-based file systems allocate disk blocks in extents. • An extent is a contiguous block of disks. Extents are allocated for file allocation. A file consists of one or more extents. Operating System Concepts

  18. pointer block = Linked Allocation • Each file is a linked list of disk blocks: blocks may be scattered anywhere on the disk. Operating System Concepts

  19. Linked Allocation (Cont.) • Simple – need only starting address • Free-space management system – no waste of space • No random access • Mapping Q LA/511 R Block to be accessed is the Qth block in the linked chain of blocks representing the file. Displacement into block = R + 1 File-allocation table (FAT) – disk-space allocation used by MS-DOS and OS/2. Operating System Concepts

  20. Linked Allocation Operating System Concepts

  21. File-Allocation Table Operating System Concepts

  22. Indexed Allocation • Brings all pointers together into the index block. • Logical view. index table Operating System Concepts

  23. Example of Indexed Allocation Operating System Concepts

  24. Indexed Allocation (Cont.) • Need index table • Random access • Dynamic access without external fragmentation, but have overhead of index block. • Mapping from logical to physical in a file of maximum size of 256K words and block size of 512 words. We need only 1 block for index table. Q LA/512 R Q = displacement into index table R = displacement into block Operating System Concepts

  25. Indexed Allocation – Mapping (Cont.) • Mapping from logical to physical in a file of unbounded length (block size of 512 words). • Linked scheme – Link blocks of index table (no limit on size). Q1 LA / (512 x 511) R1 Q1= block of index table R1is used as follows: Q2 R1 / 512 R2 Q2 = displacement into block of index table R2 displacement into block of file: Operating System Concepts

  26. Indexed Allocation – Mapping (Cont.) • Two-level index (maximum file size is 5123) Q1 LA / (512 x 512) R1 Q1 = displacement into outer-index R1 is used as follows: Q2 R1 / 512 R2 Q2 = displacement into block of index table R2 displacement into block of file: Operating System Concepts

  27. Indexed Allocation – Mapping (Cont.)  outer-index file index table Operating System Concepts

  28. Combined Scheme: UNIX (4K bytes per block) Operating System Concepts

  29. Hierarchical Directory (Unix) Claypool Figure • Tree • Entry: • name • inode number (try “ls –I” or “ls –iad .”) • example: /usr/bob/mbox inode name Operating System Concepts

  30. 1 . 6 . 26 . 1 .. 1 .. 6 .. 4 bin 26 bob 12 grants 7 dev 17 jeff 81 books 14 lib 14 sue 132 406 60 mbox 9 etc 51 sam 17 Linux 6 usr 29 mark 8 tmp Unix Directory Example Claypool Figure Root Directory Block 132 Block 406 I-node 6 I-node 26 Aha! I-node 60 has contents of mbox Looking up bob gives I-node 26 Looking up usr gives I-node 6 Relevant data (/usr) is in block 132 /usr/bob is in block 406 Operating System Concepts

  31. Unix Disk Layout Superblock Boot Sector Superblocks i-nodes Data blocks • Number of inodes • Number of blocks • Block number of I-node bit-map • block • first data block • Max file size • Magic number – identifies cpu • Architecture and executable type Operating System Concepts

  32. Free-Space Management • Bit vector (n blocks) 0 1 2 n-1 … 0  block[i] free 1  block[i] occupied bit[i] =  Block number calculation (number of bits per word) * (number of 0-value words) + offset of first 1 bit Operating System Concepts

  33. Free-Space Management (Cont.) • Bit map requires extra space. Example: block size = 212 bytes disk size = 230 bytes (1 gigabyte) n = 230/212 = 218 bits (or 32K bytes) • Easy to get contiguous files • Linked list (free list) • Cannot get contiguous space easily • No waste of space • Grouping • Counting Operating System Concepts

  34. Free-Space Management (Cont.) • Need to protect: • Pointer to free list • Bit map • Must be kept on disk • Copy in memory and disk may differ. • Cannot allow for block[i] to have a situation where bit[i] = 1 in memory and bit[i] = 0 on disk. • Solution: • Set bit[i] = 1 in disk. • Allocate block[i] • Set bit[i] = 1 in memory Operating System Concepts

  35. Linux File System {Chapter 20} • To the user, Linux’s file system appears as a hierarchical directory tree obeying UNIX semantics. • Internally, the kernel hides implementation details and manages the multiple different file systems via an abstraction layer, that is, the virtual file system (VFS). • The Linux VFS is designed around object-oriented principles and is composed of two components: • A set of definitions that define what a file object is allowed to look like • The inode-object and the file-object structures represent individual files • the file systemobject represents an entire file system • A layer of software to manipulate those objects. Operating System Concepts

  36. The Linux Ext2fs File System • Ext2fs uses a mechanism similar to that of BSD Fast File System (ffs) for locating data blocks belonging to a specific file. • The main differences between ext2fs and ffs concern their disk allocation policies. • In ffs, the disk is allocated to files in blocks of 8Kb, with blocks being subdivided into fragments of 1Kb to store small files or partially filled blocks at the end of a file. • Ext2fs does not use fragments; it performs its allocations in smaller units. The default block size on ext2fs is 1Kb, although 2Kb and 4Kb blocks are also supported. • Ext2fs uses allocation policies designed to place logically adjacent blocks of a file into physically adjacent blocks on disk, so that it can submit an I/O request for several disk blocks as a single operation. Operating System Concepts

  37. Ext2fs Block-Allocation Policies • Uses bitmap • of free blocks • Looks for free • byte first • Upon finding byte • it backs up to • avoid small holes. • If no free byte, • looks for bit • It uses scattered • allocation instead. Operating System Concepts

  38. Linked Free Space List on Disk Operating System Concepts

  39. Efficiency and Performance • Efficiency dependent on: • disk allocation and directory algorithms • types of data kept in file’s directory entry • Performance • disk cache – separate section of main memory for frequently used blocks • free-behind and read-ahead – techniques to optimize sequential access • improve PC performance by dedicating section of memory as virtual disk, or RAM disk. Operating System Concepts

  40. Page Cache • A page cache caches pages rather than disk blocks using virtual memory techniques. • Memory-mapped I/O uses a page cache. • Routine I/O through the file system uses the buffer (disk) cache. • This leads to the following figure. Operating System Concepts

  41. I/O Without a Unified Buffer Cache Operating System Concepts

  42. Unified Buffer Cache • A unified buffer cache uses the same page cache to cache both memory-mapped pages and ordinary file system I/O. Operating System Concepts

  43. I/O Using a Unified Buffer Cache Operating System Concepts

  44. Various Disk-Caching Locations Operating System Concepts

  45. Recovery • Consistency checking – compares data in directory structure with data blocks on disk, and tries to fix inconsistencies. • Use system programs to back up data from disk to another storage device (floppy disk, magnetic tape). • Recover lost file or disk by restoring data from backup. Operating System Concepts

  46. Log Structured File Systems • Log structured (or journaling) file systems record each update to the file system as a transaction. • All transactions are written to a log. A transaction is considered committed once it is written to the log. However, the file system may not yet be updated. • The transactions in the log are asynchronously written to the file system. When the file system is modified, the transaction is removed from the log. • If the file system crashes, all remaining transactions in the log must still be performed. Operating System Concepts

  47. The Sun Network File System (NFS) • An implementation and a specification of a software system for accessing remote files across LANs (or WANs). • The implementation is part of the Solaris and SunOS operating systems running on Sun workstations using an unreliable datagram protocol (UDP/IP protocol and Ethernet. Operating System Concepts

  48. NFS (Cont.) • Interconnected workstations viewed as a set of independent machines with independent file systems, which allows sharing among these file systems in a transparent manner. • A remote directory is mounted over a local file system directory. The mounted directory looks like an integral subtree of the local file system, replacing the subtree descending from the local directory. • Specification of the remote directory for the mount operation is nontransparent; the host name of the remote directory has to be provided. Files in the remote directory can then be accessed in a transparent manner. • Subject to access-rights accreditation, potentially any file system (or directory within a file system), can be mounted remotely on top of any local directory. Operating System Concepts

  49. NFS (Cont.) • NFS is designed to operate in a heterogeneous environment of different machines, operating systems, and network architectures; the NFS specifications independent of these media. • This independence is achieved through the use of RPC primitives built on top of an External Data Representation (XDR) protocol used between two implementation-independent interfaces. • The NFS specification distinguishes between the services provided by a mount mechanism and the actual remote-file-access services. Operating System Concepts

  50. Three Independent File Systems Mount S1:/usr/shared over U:/usr/local Cascaded Mount S2:/usr/dir2 over U:/usr/local/dir1 Operating System Concepts

More Related